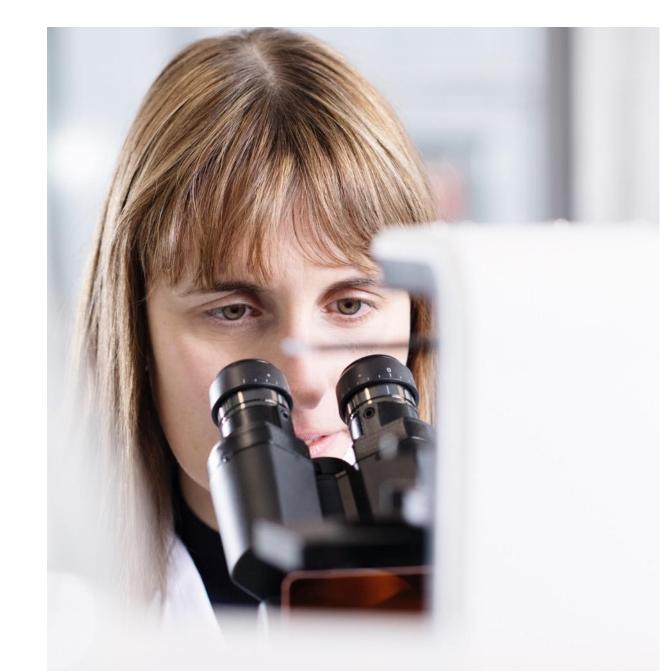


Focused on Growth and Innovation

"Patients are at the heart of what we do"


Investor presentation

March 30, 2022

Table of contents

- Executive summary
- Portfolio
 - Antifungal
 - Cresemba® (isavuconazole)
 - Antibiotic
 - Zevtera® (ceftobiprole)
 - Oncology
 - Derazantinib
 - Lisavanbulin
 - BAL0891
- Financials & Outlook
- Appendix

2

Executive summary

Experienced leadership team

(basilea)

4

At a glance

- Well funded, commercial-stage biopharmaceutical company with significantly growing cash flows from commercialized products
- Focused in the areas of anti-infectives and oncology
- Potential for sustainable growth and value creation based on commercialized brands and an innovative pipeline
- Experienced people with the proven expertise to take compounds from research to market
- Two revenue generating hospital anti-infective brands, Cresemba[®] and Zevtera[®] and three oncology drug candidates
- Recognized ability to establish and manage partnerships in both the development and commercial phase, providing access to international markets
- Listed on SIX Swiss Stock Exchange, SIX: BSLN
- Based in life sciences hub, Basel, Switzerland

Potential for sustainable growth and value creation based on commercialized brands and innovative pipeline

	Products / Product candidates / Indication	Preclinical	Phase 1	Phase 2	Phase 3	Market
Antifungals	Cresemba® (isavuconazole)					
	Invasive aspergillosis and mucormycosis (U.S. and EU and several other countries)	intravenous a	ind oral			
	Deep-seated mycoses, including invasive aspergillosis, chronic pulmonary aspergillosis (CPA), mucormycosis and cryptococcosis (Japan)	intravenous a	ind oral			
Antibiotics	Zevtera [®] (ceftobiprole) Hospital- and community-acquired bacterial pneumonia (HABP, CABP) (major European and several non-European countries) Acute bacterial skin and skin structure infections (ABSSSI) <i>Staphylococcus aureus</i> (MSSA/MRSA) bacteremia (bloodstream infections)					
		intravenous				
		intravenous				
		intravenous				
	DXR inhibitor program* CARB-X					
Oncology	Derazantinib FGFR kinase inhibitor					
07	Intrahepatic cholangiocarcinoma (iCCA) – monotherapy	oral				
	Urothelial cancer – monotherapy and combination with atezolizumab	oral				
	Gastric cancer - monotherapy and combination with ramucirumab/paclitaxel or atezolizumab	oral				
	Lisavanbulin tumor checkpoint controller					
	Glioblastoma – monotherapy, targeted, biomarker-driven patient selection	oral				
	Glioblastoma – combination with radiotherapy	oral				
	BAL0891 TTK/PLK1 kinase inhibitor	intravenous				
	Internal & external innovation	Research	Development			

* CARB-X's funding for this project is sponsored by Cooperative Agreement Number IDSEP160030 from ASPR/BARDA and by awards from Wellcome Trust and Germany's Federal Ministry of Education and Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of CARB-X or any of its funders.

Future strategy: Basilea will focus on anti-infectives

Significantly growing cash revenues from Cresemba and Zevtera:

Cresemba

- 29% royalty income growth in 2021, > USD 324 mn in-market sales in 12-months to December 2021
- Marketing approvals and launches expected in China and Japan in 2022

Zevtera

- Topline results of ceftobiprole phase 3 SAB study expected around mid-2022
- Potential to file NDA for U.S. around year-end 2022
- U.S. is the most important MRSA market ~ 80–90% of global potential
- Qualified infectious disease product (QIDP) designation provides 10 years market exclusivity from approval

Preclinical assets

- A number of preclinical programs, including DXR inhibitor (CARB-X funded)
- Focus on external sourcing of additional preclinical and clinical anti-infective compounds

Sustainable profitability from 2023

We are uniquely positioned to create sustainable value, in an area of increasing unmet medical need, with our proven ability to advance anti-infective compounds from research, through development, to commercialization.

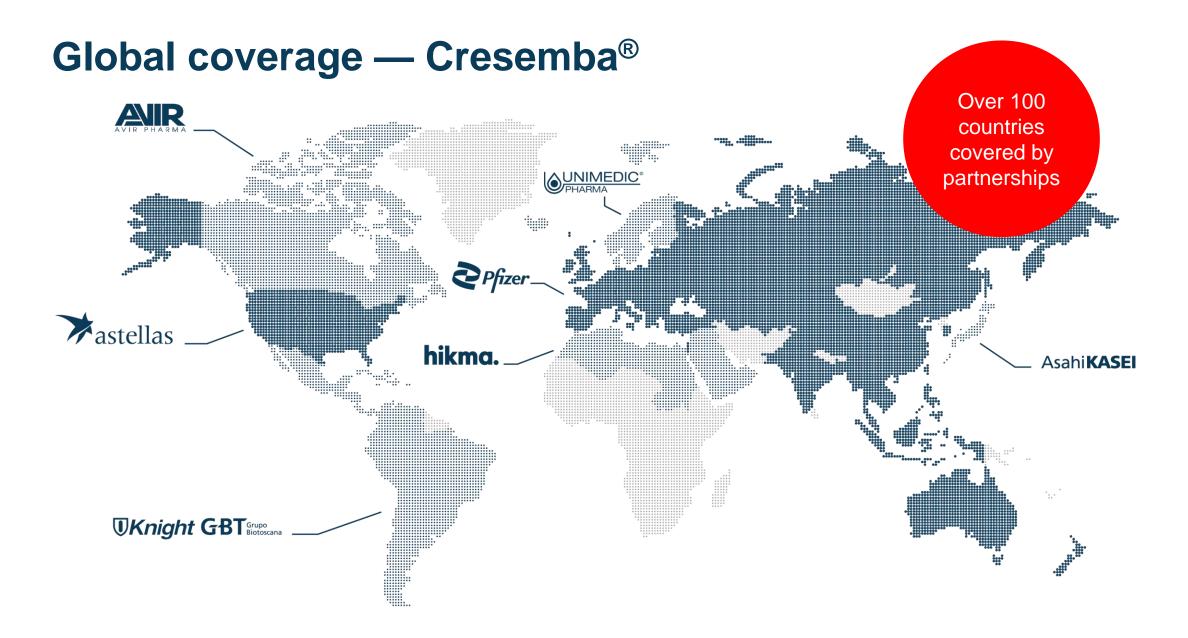
Maximize value of the existing oncology portfolio through transactions in 2022

Derazantinib and lisavanbulin

– Multiple data readouts in 2022

BAL0891 (TTK/PLK1 kinase inhibitor)

 Preparing to enable start of a phase 1 study in mid-2022

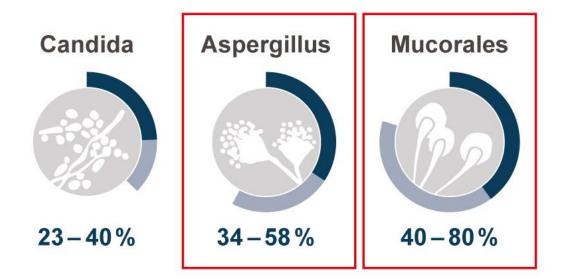

Advancing two preclinical oncology programs

One clinical candidate nomination in 2022

We are exploring a range of transaction options for either a portfolio of assets, or as individual asset transactions, in order to maximize the value of the oncology portfolio

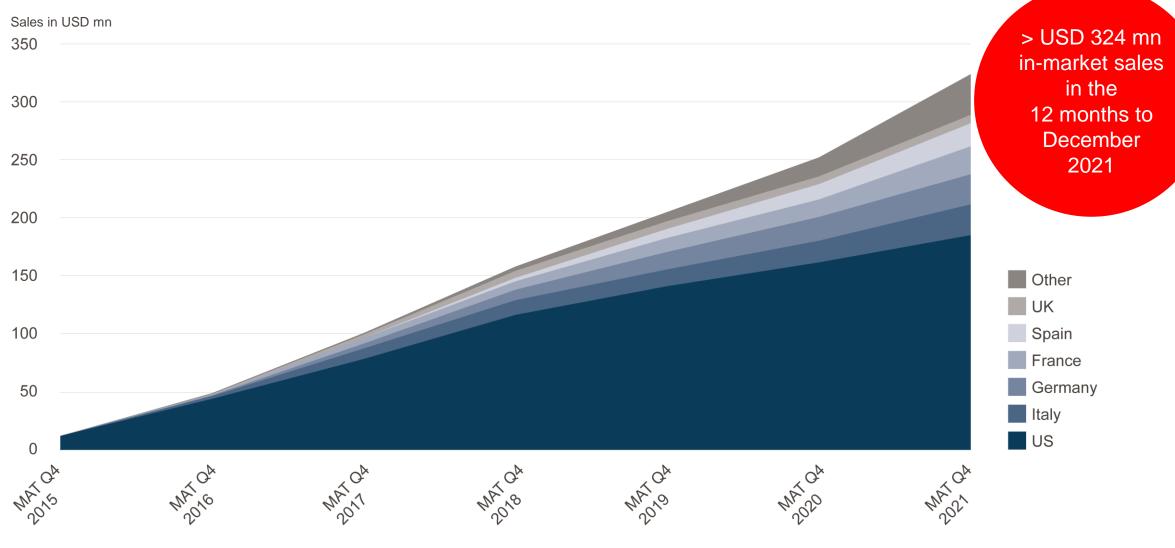
basilea

The company we keep — established strong partnerships


Antifungal Cresemba® (isavuconazole)

Invasive mold infections

The market — Invasive fungal infections

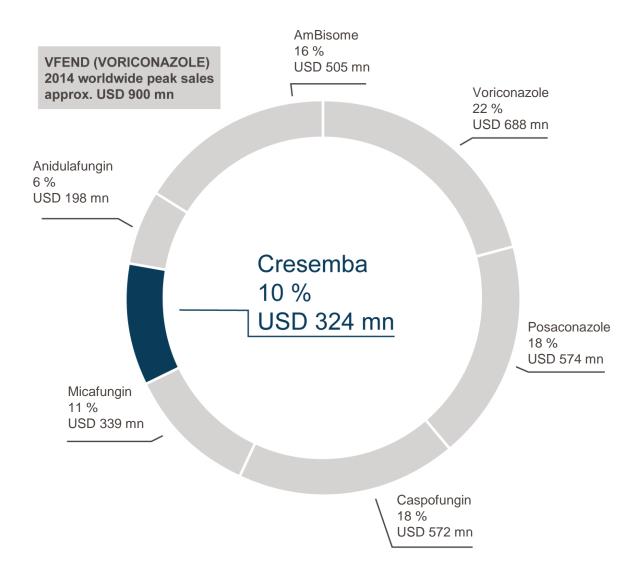

- Severe, potentially life-threatening infections mainly affecting immunocompromised patients
- An important cause of morbidity and mortality in cancer patients undergoing intensive chemotherapy regimens
- Rising number of immunocompromised patients (cancer and transplantations) driving therapeutic demand
- Mucorales infections on the rise doubled from 2000 to 2013
- Limitations of current therapies (spectrum of activity, toxicity, effective plasma levels) drive the need for new agents

Mortality rates for invasive fungal infections**

**Kullberg/Arendrup *N Engl J Med* 2015, Baddley *Clin Infect Dis* 2010, Roden *Clin Infect Dis* 2005, Greenberg *Curr Opin Infect Dis* 2004

Cresemba continues strong in-market sales uptake

MAT: Moving annual total; Source: IQVIA, December 2021


(basilea) Focused on Growth and Innovation

Sales of best-in-class antifungals* by product

USD 3.2 bn sales (MAT Q4 2021)

Potential to increase Cresemba® (isavuconazole) market share

- Anticipated to be launched in ~70 countries by end-2022
- Exclusivity through 2027 in the U.S. and potential pediatric exclusivity extension to 2027 (from 2025) in the EU

* Best-in-class antifungals: isavuconazole, posaconazole, voriconazole, AmBisome, anidulafungin, caspofungin, micafungin

MAT: Moving annual total; Source: IQVIA, December 2021, rounding consistently applied

Cresemba[®] — Differentiated by spectrum, safety and tolerability

- Broad spectrum of activity against molds, including emerging molds (mucorales)
- Consistent plasma levels
- Statistically fewer drug-related adverse events and treatment-emergent adverse events (liver, skin, eye) in invasive aspergillosis patients vs. voriconazole in SECURE phase 3 study
- Can be administered without restriction in patients with renal impairment

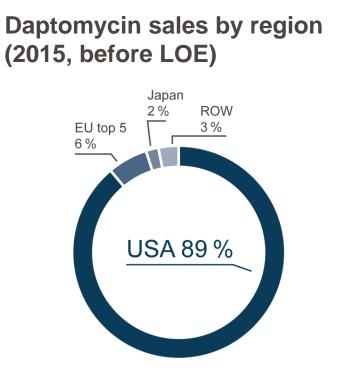
- Manageable drug-drug interaction profile
- Once daily maintenance dose, i.v./oral treatment
- ECIL-6 guideline: Cresemba[®] recommended for the first-line treatment of invasive aspergillosis in leukemia and hematopoietic stem cell transplant patients. ECIL states that isavuconazole is as effective as voriconazole with a better safety profile.

Antibacterial Zevtera® (ceftobiprole)

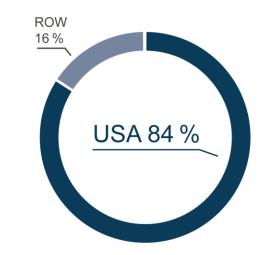
Severe bacterial infections

Zevtera[®] — An introduction

- Broad-spectrum anti-MRSA cephalosporin (including Gram-negative bacteria)
- Rapid bactericidal activity
- Potential to replace antibiotic combinations
- Early improvement in HAP, particularly in patients with MRSA, and CAP, including high-risk patients
- Cephalosporin class safety profile
- Marketed in selected countries in Europe,
 Latin America, the MENA-region and Canada


Approved in major European countries & several non-European countries for both hospitalacquired pneumonia (HAP), excluding ventilator-associated pneumonia (VAP), and community-acquired pneumonia (CAP). Not approved in the U.S.

MENA: Middle East and North Africa



Focused on Growth and Innovation

The hospital anti-MRSA antibiotic market — A USD 2.8 bn market* with the U.S. being the most important region

Ceftaroline sales by region (MAT Q4 2021)

* Vancomycin, linezolid, teicoplanin, daptomycin, tigecycline, telavancin, ceftaroline, dalbavancin, ceftobiprole, oritavancin and tedizolid (daptomycin and tigecycline are partial sales in the USA in IQVIA data)

MRSA: Methicillin-resistant Staphylococcus aureus; LOE: Loss of exclusivity; ROW: Rest of world; MAT: Moving annual total; Source: IQVIA, December 2021

(basilea) Focused on Growth and Innovation

Confidential/proprietary information of Basilea Pharmaceutica International Ltd. – not for distribution 18

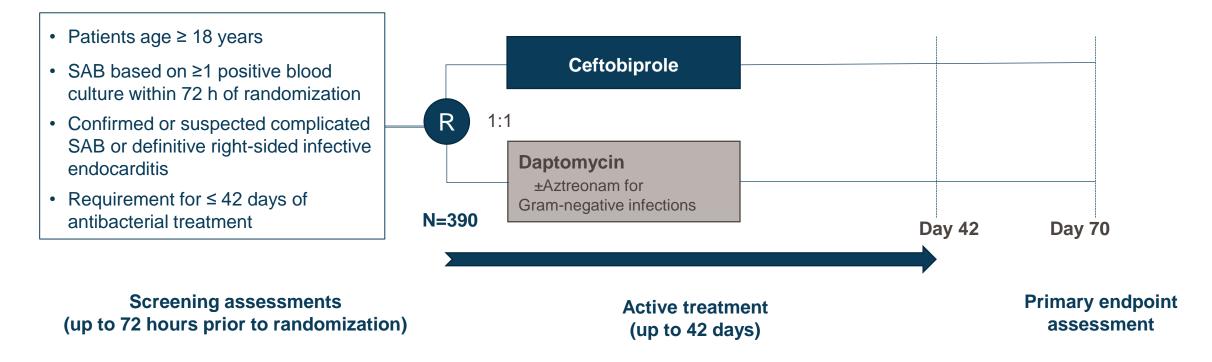
Strategy for accessing the U.S. market

- Two cross-supportive phase 3 studies under FDA Special Protocol Assessment (SPA)
 - Acute Bacterial Skin and Skin Structure Infections (ABSSSI)¹, successfully completed

2. Staphylococcus aureus bacteremia (SAB)², patient enrolment completed in January 2022, topline results expected mid-year 2022

 Phase 3 program largely funded by BARDA (~70% of total program costs; up to USD ~134 mn)

 Qualified Infectious Disease Product (QIDP) designation extends U.S. market exclusivity to 10 years from approval


¹ Overcash JS et al. Clin Infect Dis. 2021;73:e1507-e1517. (NCT03137173) ² Hamed K et al. Future Microbiol. 2020;15:35-48. (NCT03138733)

Phase 3 study with ceftobiprole in the treatment of patients with SAB

ERADICATE is the largest randomized study conducted for registrational purposes of a new antibiotic treatment in *Staphylococcus aureus* bacteremia

Adapted from Hamed K et al. Future Microbiol. 2020;15:35-48

SAB – an area with high medical need

- Nearly 120,000 S. aureus bloodstream infections in the U.S. (in 2017)¹
- ERADICATE targets complicated SAB, characterized by concomitant or metastatic infections such as bone, joint or heart valve infections; persistent bacteremia; or bacteremia in patients on dialysis
- Substantial morbidity and approximately 20% 30-day mortality²
- Limited antibiotic treatment options with only two approved treatments for SAB in the U.S. that cover both MSSA and MRSA, i.e. vancomycin and daptomycin

Meningitis Asymptomatic nasal carriage **Bacterial entry** into the blood stream and Infective endocarditis dispersal Colonization of IV catheter Vertebral osteomyelitis or skin infection Septic arthritis Abscess

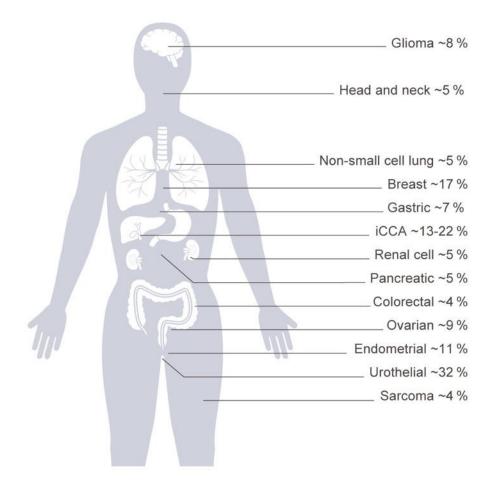
Adapted from Edwards AM et al. Trends Microbiol. 2011;19:184-190.

¹ MMWR. 2019:68:214–219.

² Hamed K et al. Future Microbiol. 2020;15:35-48. MRSA: methicillin-resistant Staphylococcus aureus MSSA: methicillin-susceptible Staphylococcus aureus

(basilea)

Confidential/proprietary information of Basilea Pharmaceutica International Ltd. - not for distribution


Causes and consequences of SAB

Oncology Derazantinib

FGFR-driven tumors

Targeting FGFR-driven tumors with derazantinib

- Small molecule, oral inhibitor of FGFR family of kinases
- Development strategy focused on achieving differentiation by leveraging unique properties of derazantinib
 - Kinase inhibition profile: potential advantage of additional targets of derazantinib such as CSF1R and VEGFR2 kinase
 - Safety profile: exploring relevance for potential combination therapies
- Focus on two clinical studies:
 - FIDES-01 (Ph 2) in intrahepatic cholangiocarcinoma (iCCA)
 - FIDES-03 (Ph 1/2) in gastric cancer

Phase 2 studies with FGFR-inhibitors in iCCA

Variable	Derazantinib ¹ FIDES-01 Cohort 1	Infigratinib² (QED)	Pemigatinib ³ (Incyte) FIGHT-202	Futibatinib⁴ (Taiho) FOENIX- CCA2
Ν	103	108	108	103
Objective response rate	21%	23%	37%	42%
Disease control rate	76 %	84%	82%	83%
Median progression-free survival	8.0 months	7.3 months	7.0 months	9.0 months

Derazantinib ⁵ FIDES-01 Cohort 2*	Pemigatinib ⁶ (Incyte) FIGHT-202
23	20
9%	0%
74%	40%
7.3 months	2.1 months

FGFR2 fusions/rearrangementFGF/R non-fusion genetic alterations

- Derazantinib continues to show a well-manageable safety profile, with low rates of retinal side effects, stomatitis, hand-foot syndrome and nail toxicity.
- Overall, these results underscore the favorable benefit to risk profile of derazantinib as a monotherapy in bile duct cancer

4. Goyal et al. Cancer Res 2021; 81, 13 Supplement, pp. CT010. 5. Javle et al., J Clin Oncol 40, no. 4_suppl (February 01, 2022) 427-427. 6. Abou-Alfa et al. Lancet Oncol 2020;21(5):671-684. *Interim analysis, based on investigator assessments.

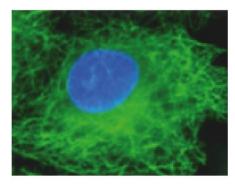
^{1.} Droz Dit Busset et al., ESMO 2021 and Basilea data on file. 2. Javle et al. J Clin Oncol 39, no. 3_suppl (January 20, 2021) 265-265. 3. Abou-Alfa et al. J Clin Oncol 39, no. 15_suppl (May 20, 2021) 4086-4086.

Clinical program in gastric cancer – FIDES-03

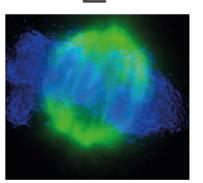
Multi-cohort Phase 1b/2 study of derazantinib as monotherapy or in combination therapy with standard of care (ramucirumab/paclitaxel) or atezolizumab in patients with advanced HER2-negative gastric adenocarcinoma harboring FGFR genetic aberrations

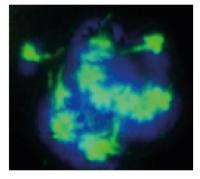
- Substudies using derazantinib monotherapy or combination treatment, including:
 - Derazantinib monotherapy in various molecular subtypes
 - Combination of derazantinib with ramucirumab/paclitaxel
 - Combination of derazantinib with atezolizumab
- Clinical supply agreement with Roche for atezolizumab
- Clinical trial collaboration and supply agreement with Lilly for ramucirumab
- Interim results in derazantinib monotherapy and recommended phase 2 dose of derazantinib in combination with ramucirumab/paclitaxel expected H1 2022

FIDES-03: NCT04604132


Oncology Lisavanbulin

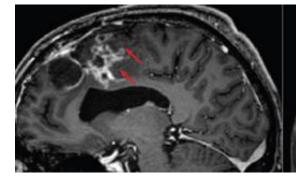
Glioblastoma and other solid tumors


Novel tumor checkpoint controller crossing the blood-brain barrier

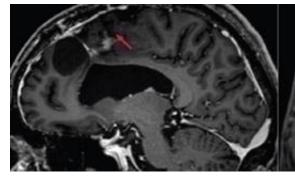

- Novel compound inducing tumor cell death through spindle assembly checkpoint activation
- Targeting diverse tumor types resistant to standard therapeutic approaches
- Flexible dosing potential, including daily oral dosing
- Crosses the blood-brain barrier with potent activity in brain tumor models alone and in combination
- Comprehensive biomarker program to optimize patient selection, e.g. EB1 (end-binding protein 1)
- Orphan drug designation granted for the treatment of malignant glioma

Non-dividing tumor cell

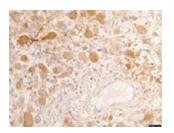
Blue = DNA Green = microtubules


Normal dividing tumor cell BAL27862-treated tumor cell*

* Lisavanbulin (BAL101553) is a prodrug of BAL27862


Biomarker-driven phase 2 study ongoing in recurrent glioblastoma

- EB1 is located on the microtubules and involved in microtubule dynamics and has been shown to be a response predictive marker for lisavanbulin in preclinical studies
- Results from phase 1 study with daily oral lisavanbulin in patients with recurrent glioblastoma (n= 20):^{1, 2}
 - Three patients with EB1-positive glioblastoma
 - Two of the EB1-positive patients with long-lasting clinical benefit, ongoing for more than 3 years
 - One exceptional response with >80% reduction in glioblastoma tumor size
 - No clear clinical benefit for EB1-negative patients
- Phase 2 interim results expected H1 2022

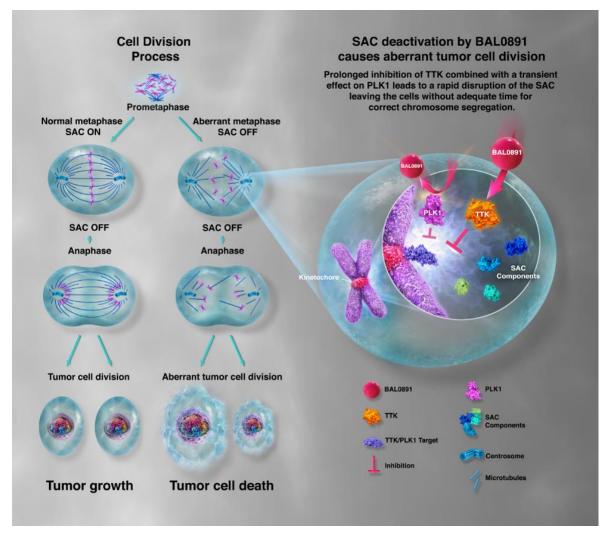

Glioblastoma tumor size reduction in an exceptional responder and EB1 staining of glioblastoma tissue compared to nonresponding patients

Baseline (May 2018)

Post Cycle 12 (April 2019)

Responder

Non-responder



Oncology BAL0891

Solid tumors

A first-in-class mitotic checkpoint inhibitor

- Unique dual inhibitor of threonine tyrosine kinase (TTK) and polo-like kinase 1 (PLK1)
 - Dual action of BAL0891, with prolonged TTK and transient PLK1 inhibition, leads to a rapid disruption of the spindle assembly checkpoint (SAC)
 - Cells are pushed through mitosis without adequate time for correct chromosome alignment and segregation
 - Activity results in aberrant tumor cell division leading to tumor cell death
 - Potent single-agent anti-cancer activity in preclinical models of human cancer
- FDA approved IND in December 2021
- Preparing to enable start of phase 1 study in patients with solid tumors mid-2022

Financials & Outlook

Guidance: Sustainable profitability from FY 2023 expected

In CHF mn	FY 2023e (guidance)	FY 2022e* (guidance)	FY 2021 (actual)	
Cresemba & Zevtera related revenue	-	98 – 104	131.4	
Royalty income	-	~ 59	53.2	
Total revenue	-	106 – 112	148.1	
Cost of products sold Operating expenses	- -30% vs. 2022	21 – 24 ~ 110	24.1 122.9	
Operating (loss)/profit	> 0	(20 – 25)	1.2	
Net cash used in operating activities	Cash flow positive	10 – 15	32.0	

2022 vs. 2021: Decrease due to lower expected milestone payments

* 2022 guidance does not include the potential impact from strategic transactions on the oncology assets

(basilea) Focused on Growth and Innovation

Outlook 2022: Anti-infectives

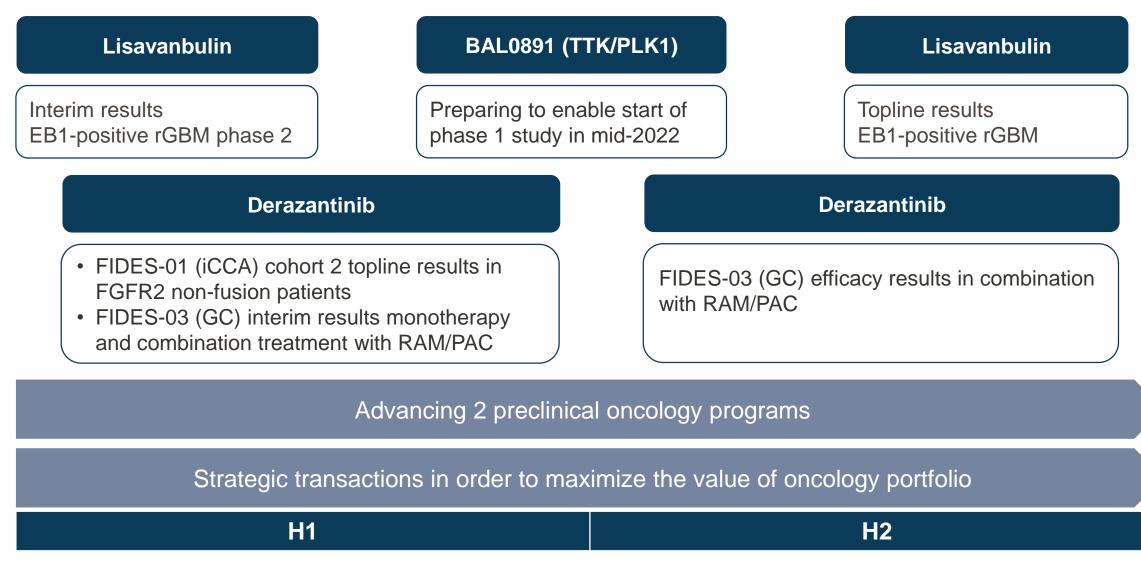
Completed patient enrolment in phase 3 SAB study (ERADICATE)

Ceftobiprole

Topline results phase 3 SAB study (ERADICATE)

• Launched in 70 countries by year-end

Increasing Cresemba (isavuconazole) & Zevtera (ceftobiprole) revenue

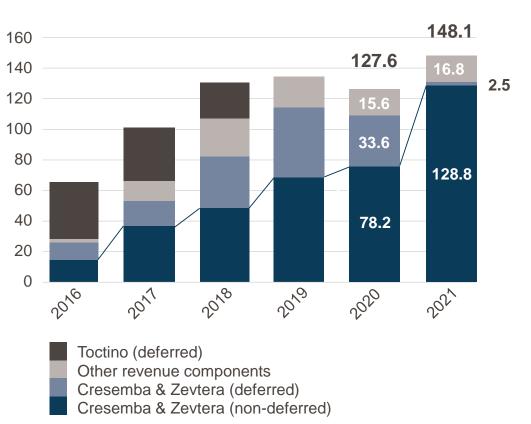

Advancement of preclinical anti-infective assets

In-licensing of anti-infectives

H1

H2

Outlook 2022: Oncology

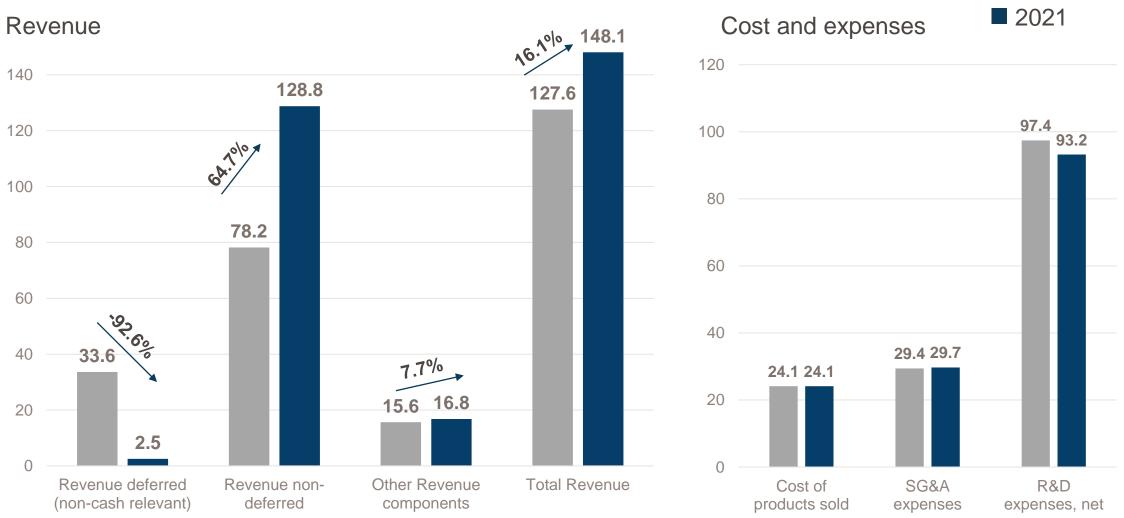


Appendix

2021 revenue and year-end cash-position exceed financial guidance

In CHF mn	FY 2021 (actual)	FY 2021e (guidance)	FY 2020 (actual)
Total revenue	148.1	134 – 144	127.6
thereof: Contributions Cresemba & Zevtera			
non-deferred deferred	128.8 2.5	115 – 125 2.5	78.2 33.6
Operating profit/(loss)	1.2	(7 – 17)	(8.2)*
Cash and investments#	150 [173 ^{##}]	142 - 147 [165 – 170 ^{##}]	167.3

Continued strong double-digit growth in Cresemba & Zevtera non-deferred revenue contributions Y-o-Y, CHF mn

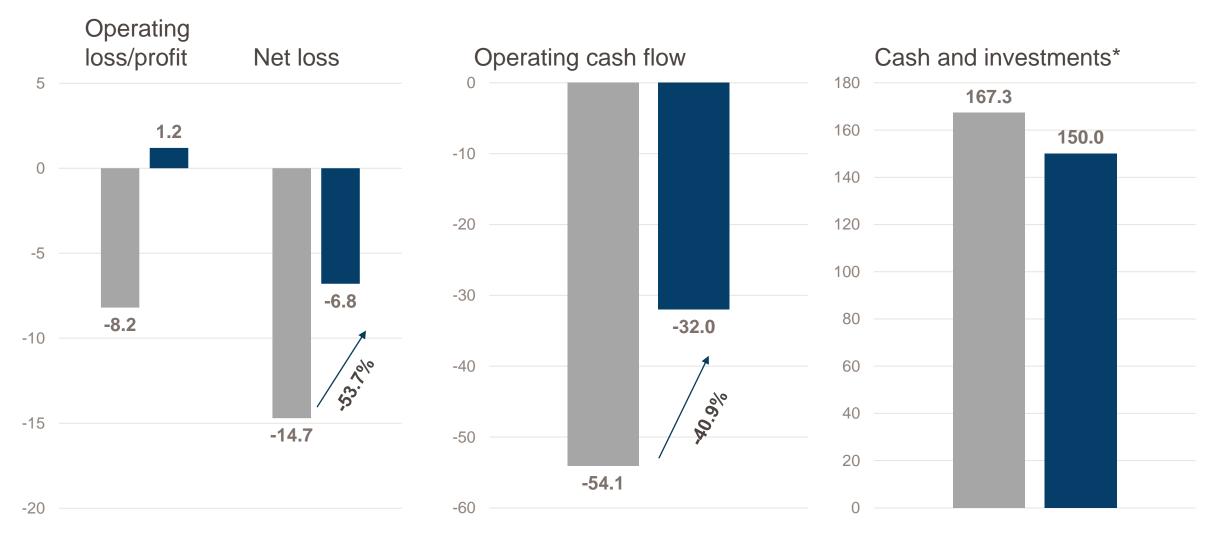

* Including CHF 15mn one-off gain from sale and lease back transaction

Cash, restricted cash and investments

##Excluding impact from reduction of the outstanding convertible bonds in 2021

(basilea) Focused on Growth and Innovation

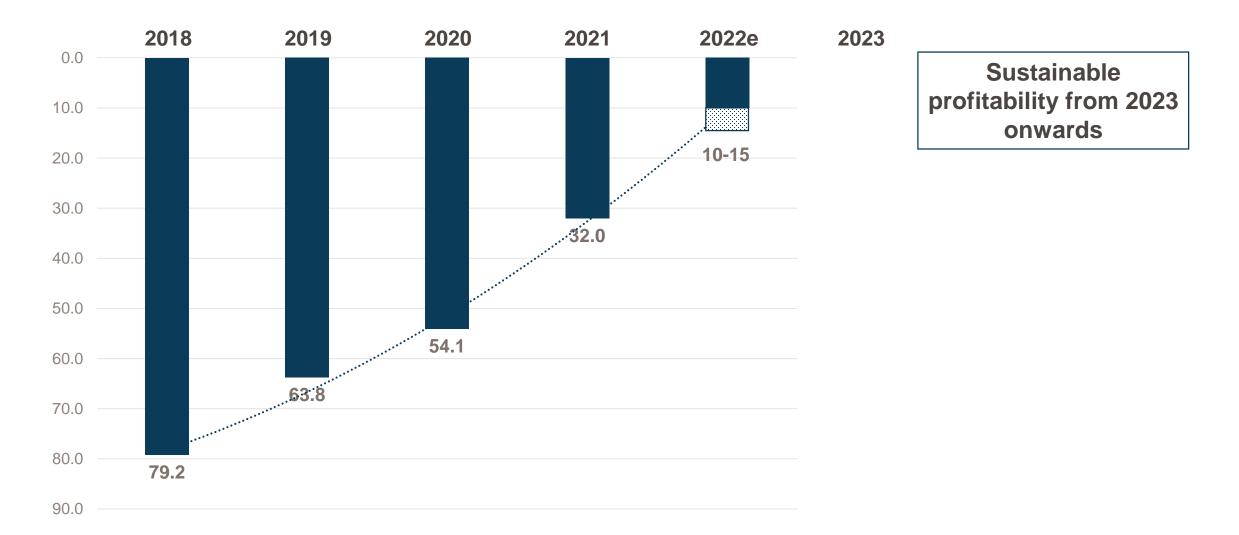
Financial summary, in CHF mn (1/2)

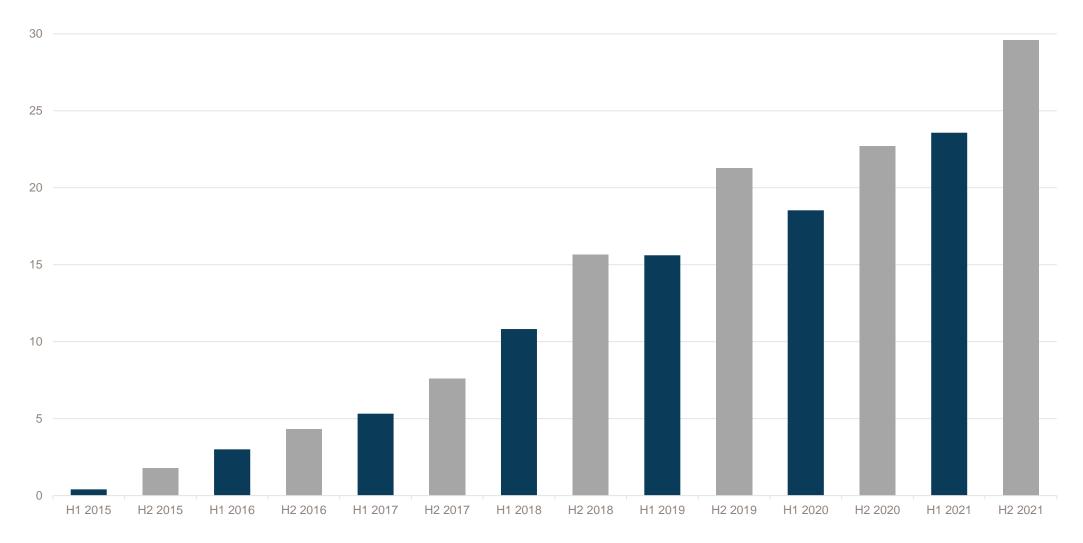

Note: Consolidated figures in conformity with U.S. GAAP; rounding applied consistently

Focused on Growth and Innovation

37

Financial summary, in CHF mn (2/2)

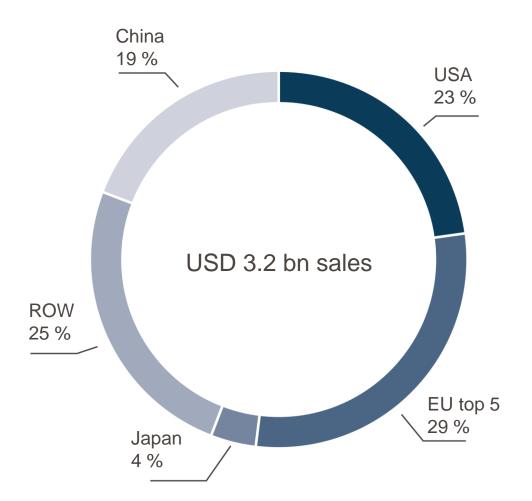



Note: Consolidated figures in conformity with U.S. GAAP; rounding applied consistently, *Cash, cash equivalents, restricted cash and investments

(basilea) Focused on Growth and Innovation

Net cash used in operating activities

Cresemba royalty revenue growth reflects continued commercial success in key territories (in CHF mn)



Note: Consolidated figures in conformity with U.S. GAAP; rounding applied consistently

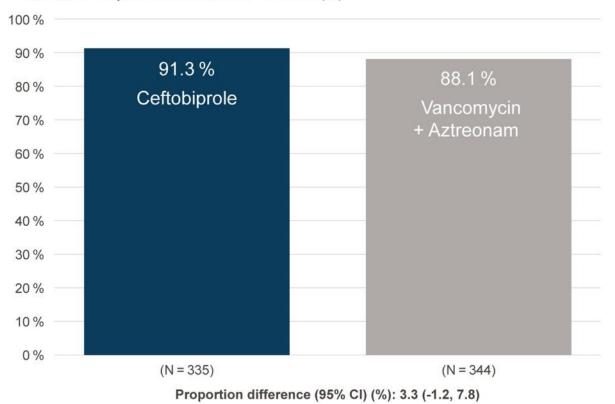
(basilea) Focused on Growth and Innovation

Significant sales of bestin-class antifungals in all major regions — Covered by our partnerships

USD 3.2 bn sales of best-in-class antifungals* (MAT Q4 2021)

* Best-in-class antifungals: isavuconazole, posaconazole, voriconazole, AmBisome, anidulafungin, caspofungin, micafungin

MAT: Moving annual total; Source: IQVIA, December 2021


Ceftobiprole — Positive topline phase 3 results reported in ABSSSI

Key topline study¹ results showing non-inferiority of ceftobiprole to vancomycin plus aztreonam for the primary and secondary endpoints

Early clinical response at 48–72h after start of treatment (ITT population)

Patients with early clinical success at 48-72 hours (%)

ITT: intent-to-treat

Pre-defined limit of non-inferiority = lower limit of 95 % CI for difference > -10 %

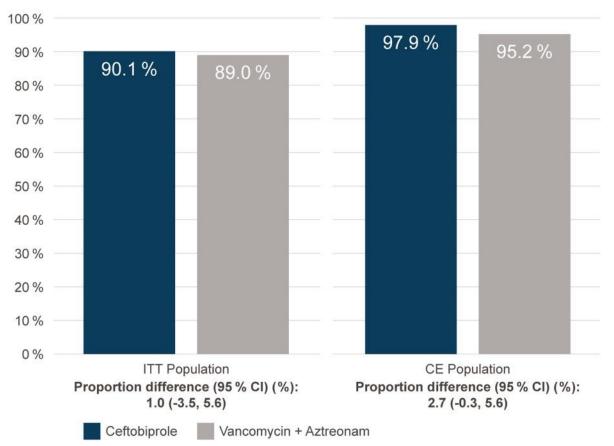
Confidential/proprietary information of Basilea Pharmaceutica International Ltd. – not for distribution

¹ NCT03137173 ABSSSI: Acute bacterial skin and skin structure infections

(basilea) Focused on Growth and Innovation

Ceftobiprole — Positive topline phase 3 results reported in ABSSSI

Key topline study¹ results showing non-inferiority of ceftobiprole to vancomycin plus aztreonam for the primary and secondary endpoints



¹NCT03137173 ABSSSI: Acute bacterial skin and skin structure infections

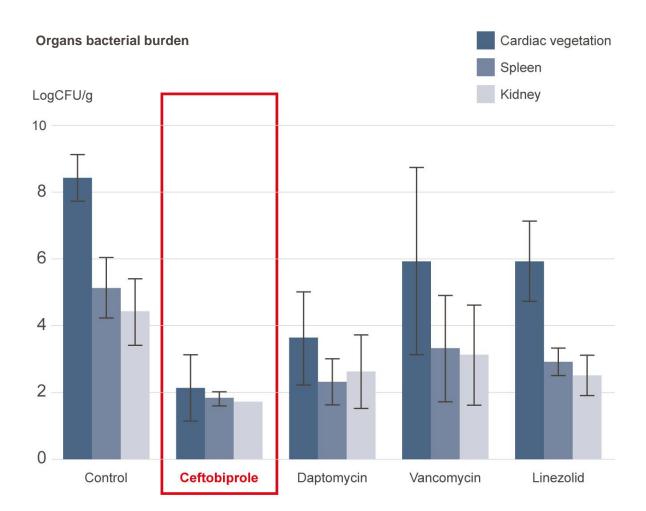
(basilea) Focused on Growth and Innovation

Investigator-assessed clinical success at test-of-cure (TOC) 15-22 days after randomization (ITT, CE populations)

Patients with clinical success at the TOC visit (%)

CE: clinically evaluable; ITT: intent-to-treat

Confidential/proprietary information of Basilea Pharmaceutica International Ltd. - not for distribution


Ceftobiprole key attributes for SAB treatment

- Advanced generation cephalosporin with broadspectrum bactericidal activity against Gram-positive organisms, including MRSA and MSSA, and Gramnegative organisms¹
- Efficacy demonstrated in Phase 3 clinical studies in acute bacterial skin and skin structure infections, and pneumonia^{1,2}
- Superior activity profile in multiple in vivo models of serious infection compared to vancomycin and daptomycin³
- Low propensity for resistance development¹
- Established safety profile consistent with the cephalosporin class, demonstrated in both adult and pediatric patients^{1,2,4}

¹Syed YY. Drugs. 2014;74:1523-1542. ²Overcash JS et al. Clin Infect Dis. 2021:73:e1507-e1517. ³Tattevin P et al. Antimicrob Agents Chemother. 2010;54:610-613. ⁴Rubino CM et al. Pediatr Infect Dis J. 2021:40:997-1003.

(basilea) Focused on Growth and Innovation

Comparative efficacy in a rabbit model of endocarditis

Organism titers in cardiac vegetations, spleens and kidneys of untreated and antibiotic treated rabbits infected with MRSA³

FGFR-inhibitors show differences in kinase-inhibition profiles¹

FGFR-inhibitor compound (Sponsor)	Parameter	FGFR1	FGFR2	FGFR3	FGFR4	CSF1R	VEGFR2
Derazantinib (Basilea)	Ratio to FGFR2 activity	4	1	4	77	3	6
Pemigatinib (Incyte)	Ratio to FGFR2 activity	3	1	4	39	231	62
Erdafitinib (Janssen)	Ratio to FGFR2 activity	2	1	2	13	95	6
Rogaratinib (Bayer)	Ratio to FGFR2 activity	5	1	6	18	116	48
Infigratinib (QED)	Ratio to FGFR2 activity	2	1	2	47	86	55
Futibatinib (Taiho)	Ratio to FGFR2 activity	2	1	2	18	NA	NA

¹ McSheehy et al. Derazantinib (DZB): A dual FGFR/CSF1R-inhibitor active in PDX-models of urothelial cancer. Mol Cancer Ther. 2019 (18) (12 Supplement) LB-C12

FGFR-inhibitors show differences in safety profiles

	Cholangiocarcinoma				Urothelial cancer	
	DZB ¹ (N=103)	INF ² (N=108)	FUT ³ (N=67)	PEM ⁴ (N=146)	ERD ⁵ (N=99)	
Dosing regimen	300 mg QD	125 mg Q4W QD for 3w	20 mg QD	13.5 mg Q3W QD for 2w	8 mg QD (titration to 9 mg)	
Most frequent treatment-related adverse events	Phosphorusû Nausea ASTû	Phosphorusû Stomatitis Alopecia/PPES	Phosphorusû Diarrhea Dry mouth	Phosphorus û Alopecia Dysgeusia	Phosphorus û Stomatitis Dry mouth	
Hyperphosphatemia	37%	74%	81%	55%	73%	
Alanine aminotransferase (ALT) û	23%	8%	NR	2%	12%	
Alopecia	14%	32%	NR	46%	27%	
Diarrhea	20%	18%	37%	36%	37%	
Dry eye	22%	31%	NR	21%	19%	
Dry mouth	23%	21%	33%	29%	43%	
Fatigue	20%	29%	NR	32%	21%	
Hand-foot syndrome/PPES	2%	32%	18%*	15%	22%	
Nail toxicities	7%	57% *	42% *	43% *	52%	
Retinopathy [†]	1%	17% *	9%*	3%	21%	
Stomatitis	2%	51%	NR	32%	55%	

Abbreviations: DZB: derazantinib, INF: infigratinib, FUT: futibatinib, PEM: pemigatinib, ERD: erdafitinib; PPES: Palmar-plantar erythrodysesthesia syndrome; NR: not reported; QD: daily; Q3W/Q4W: every 3/4 weeks; w: weeks

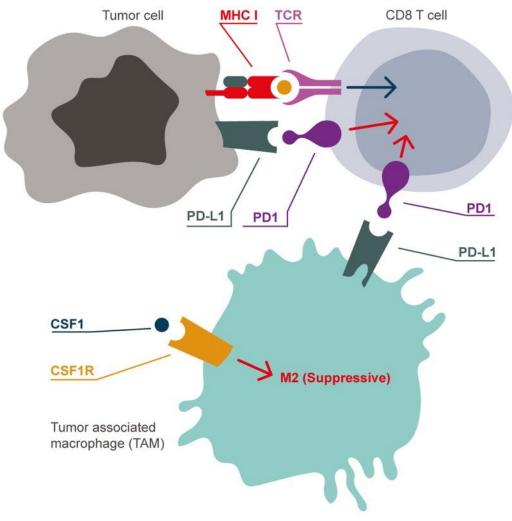
Percentages refer to treatment-related adverse events except for annotated (*) adverse events regardless of causality.

[†]Refers to Retinal Pigment Epithelial Detachment (RPED) or Central Serous Retinopathy (CSR).

References:

¹ Droz Dit Busset et al. Annals of Oncology (2021) 32 (suppl_5): S376-S381 and Basilea data on file; ² Javle et al.Lancet Gastroenterol Hepatol. 2021 Oct;6(10):803-815 and Trusetiq U.S. Prescribing information (05/2021);

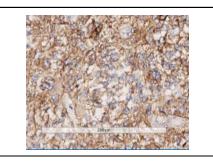
³ Goyal et al. J Clin Onc 38, no. 15_suppl (May 20, 2020) 108-108; ⁴ Abou-Alfa et al. Lancet Oncol. 2020 May;21(5):671-684 and PemazyreTM U.S. Prescribing Information (06/2021);


⁵ Loriot et al. N Engl J Med. 2019 Jul 25;381(4):338-348 and Balversa[™] U.S. prescribing information (07/2020).

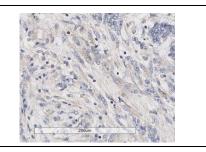
Potential therapeutic relevance of CSF1Rinhibition

- Derazantinib is active in inhibiting FGFR kinases and CSF1R (Colony-stimulating factor-1 receptor)
- CSF1R-inhibition may reprogram immunosuppressive tumor-infiltrating macrophages, restore T-cell activity and thereby improve the susceptibility to PD1/PD-L1 inhibitors¹
- Derazantinib may address several oncogenic mechanisms at the same time, i.e. inhibiting FGFR and making the tumor more susceptible to immunotherapy
- Basilea entered into a clinical supply agreement with Roche to study a combination of derazantinib and Roche's PD-L1blocking immune-checkpoint inhibitor atezolizumab in patients with urothelial and gastric cancer

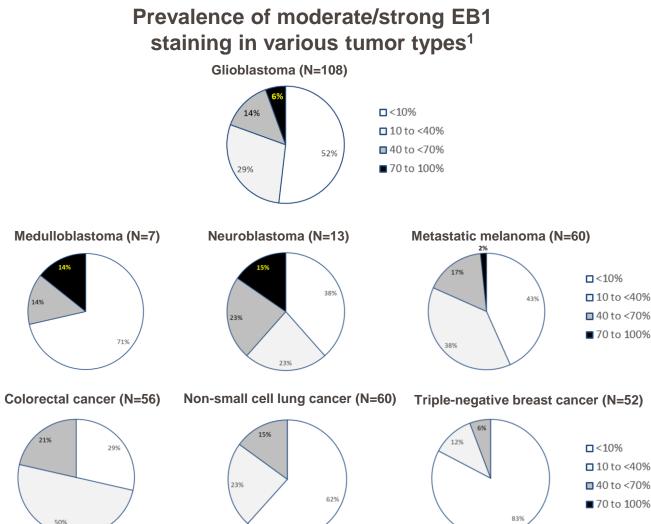
Tumor microenvironment



Graph adapted from: A. Ghasemzadeh et al. New Strategies in Bladder Cancer: A Second Coming for Immunotherapy. Clin Cancer Res. 2016;22(4):793-801

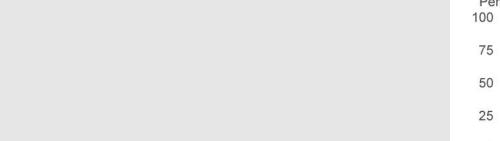

¹ X. Zheng et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436-48452

EB1-prevalence in glioblastoma and other cancer types


Example of an EB1-positive and EB1negative glioblastoma tissue sample¹

EB1-positive: Tumor cells show moderate to strong EB1 staining

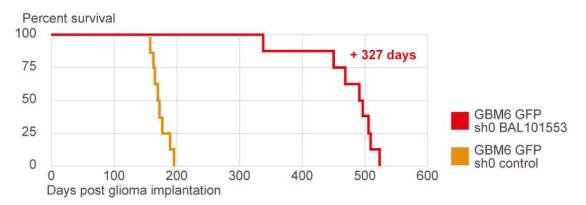
EB1-negative: Absence of moderate to strong EB1 staining

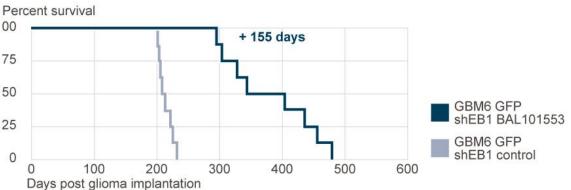

The pie-charts depict the percentages of tissue samples with moderate or strong EB1-staining in the following categories: <10% of tumor cells, 10 to < 40% of tumor cells, 40 to < 70% of tumor cells, ≥ 70% of tumor cells.

1.Skowronska et al. J Clin Oncol 39, no. 15_suppl (May 20, 2021) 3118-3118.

(basilea) Focused on Growth and Innovation

EB1 — A potential response-predictive clinical biomarker for lisavanbulin


- EB1 (plus-end binding protein)¹ is located on the microtubules and involved in microtubule dynamics
- Predictive of response to lisavanbulin in mouse models¹


¹ Berges et al. EB1-dependent long survival of glioblastoma cancer stem-like cell tumorbearing mice after oral treatment with the novel tubulin-binding checkpoint activator BAL101553. Eur. J. Cancer 2018, 103, E61-62, A166

Effect of lisavanbulin (BAL101553) on survival in mice with EB1-expressing or EB1 downregulated GBM

EB1-expressing GBM

Glossary

-	ABSSSI:	Acute bacterial skin and skin structure infections
—	CARB-X:	Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator
_	CSF1R:	Colony-stimulating factor 1 receptor
—	FGFR:	Fibroblast growth factor receptor
—	FIDES:	Fibroblast growth factor inhibition with derazantinib in solid tumors
_	iCCA:	Intrahepatic cholangiocarcinoma
_	IND:	Investigational n ew d rug
_	MSSA:	Methicillin-susceptible Staphylococcus aureus
—	MRSA:	Methicillin-resistant Staphylococcus aureus
_	NDA:	New drug application
—	ORR:	Objective response rate
—	PAC:	Paclitaxel
_	PFS:	Progression-free survival
_	PLK1:	Polo-like kinase 1
—	RAM:	Ramucirumab
_	SAB:	Staphylococcus aureus bacteremia
_	SAC:	Spindle assembly checkpoint
_	TTK:	Threonine tyrosine kinase
—	VEGFR2:	Vascular endothelial growth factor receptor 2

(basilea)

Disclaimer and forward-looking statements

This communication, including the accompanying oral presentation, contains certain forward-looking statements, including, without limitation, statements containing the words "believes", "anticipates", "expects", "supposes", "considers", and words of similar import, or which can be identified as discussions of strategy, plans or intentions. Such forward-looking statements are based on the current expectations and belief of company management, and are subject to numerous risks and uncertainties, which may cause the actual results, financial condition, performance, or achievements of Basilea, or the industry, to be materially different from any future results, performance, or achievements expressed or implied by such forward-looking statements. Such factors include, among others, the following: the uncertainty of pre-clinical and clinical trials of potential products, limited supplies, future capital needs and the uncertainty of additional funding, compliance with ongoing regulatory obligations and the need for regulatory approval of the company's operations and potential products, dependence on licenses, patents, and proprietary technology as well as key suppliers and other third parties, including in preclinical and clinical trials, acceptance of Basilea's products by the market in the event that they obtain regulatory approval, competition from other biotechnology, chemical, and pharmaceutical companies, attraction and retention of skilled employees and dependence on key personnel, and dependence on partners for commercialization of products, limited manufacturing resources, management's discretion as to the use of proceeds, risks of product liability and limitations on insurance, uncertainties relating to public health care policies, adverse changes in governmental rules and fiscal policies, changes in foreign currency and other factors referenced in this communication. Given these uncertainties, prospective investors are cautioned not to place undue reliance on such forwardlooking statements. Basilea disclaims any obligation to update any such forward-looking statements to reflect future events or developments, except as required by applicable law. Derazantinib and lisavanbulin and their uses are investigational and have not been approved by a regulatory authority for any use. Efficacy and safety have not been established. The information presented should not be construed as a recommendation for use. The relevance of findings in nonclinical/preclinical studies to humans is currently being evaluated.

Focused on Growth and Innovation

Grenzacherstrasse 487 PO Box 4005 Basel Switzerland

investor_relations@basilea.com www.basilea.com

All rights reserved. © Basilea Pharmaceutica International Ltd. 2022