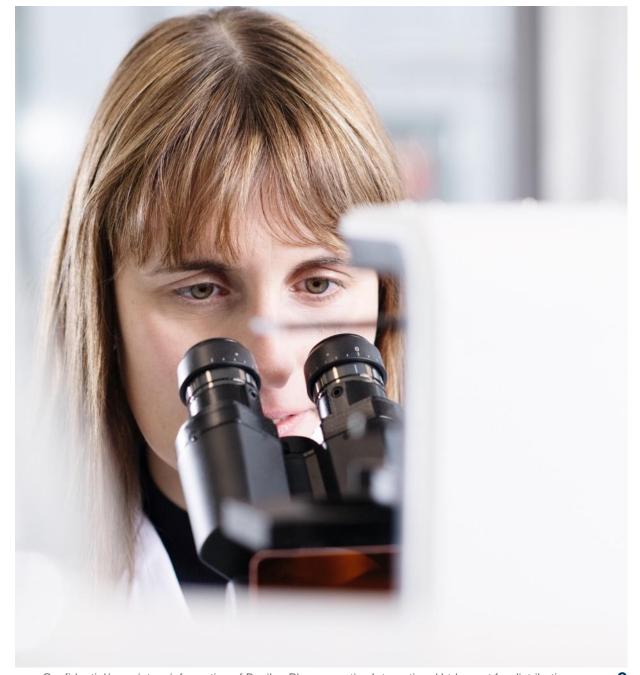


Focused on Growth and Innovation


"Patients are at the heart of what we do"

Investor presentation October 23, 2020

Table of contents

- Executive summary
- Five reasons to invest
- Portfolio
 - Antifungal
 - Cresemba® (isavuconazole)
 - Antibiotic
 - Zevtera[®] / Mabelio[®] (ceftobiprole)
 - Oncology
 - Derazantinib
 - Lisavanbulin (BAL101553)
- Financials
- Appendix

Executive summary

Experienced leadership team

David Veitch CEO

Joined

2014

Previous roles:

Adesh Kaul CFO

2009

Marc Engelhardt MD, Ph.D. CMO

2010

Gerrit
Hauck
Ph.D. CTO

2018

Kellenberger Ph.D. CSO

2000

At a glance

- Well funded, commercial-stage biotech company with significantly growing cash flows from commercialized products
- Focused in the areas of oncology and infectious diseases
- Potential for sustainable growth and value creation based on commercialized brands and an innovative pipeline
- Experienced people with the proven expertise to take compounds from research to market
- Two revenue generating hospital anti-infective brands,
 Cresemba[®] and Zevtera[®] and two clinical oncology drug candidates
- Recognized ability to establish and manage partnerships in both the development and commercial phase, providing access to international markets
- Listed on SIX Swiss Stock Exchange, SIX: BSLN
- Based in life sciences hub, Basel, Switzerland


Potential for sustainable growth and value creation based on commercialized brands and innovative pipeline

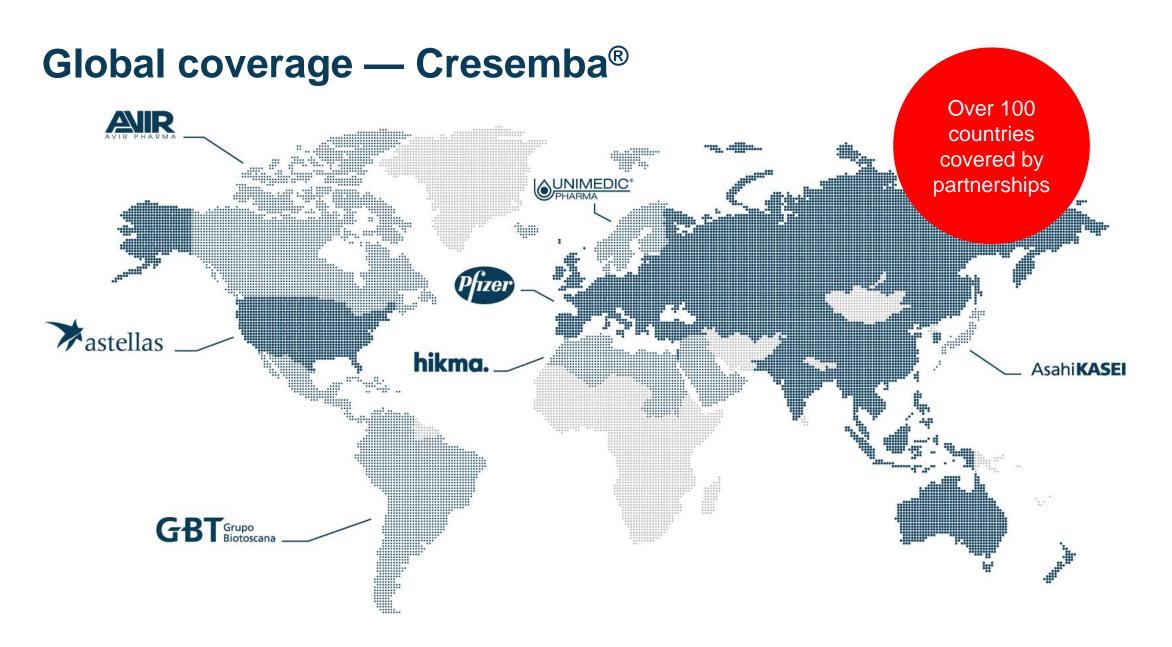
	Products / Product candidates / Indication	Preclinical	Phase 1	Phase 2	Phase 3	Market
Antifungals	Cresemba® (isavuconazole)					
•	Invasive aspergillosis and mucormycosis (U.S. and EU and several other countries)	intravenous a	and oral			
	Invasive fungal infections (Japan)	intravenous a	and oral			
Antibiotics	Zevtera®/Mabelio® (ceftobiprole)					
Antibiotics	Hospital- and community-acquired pneumonia (HAP, CAP)	intravenous				
	(major European and several non-European countries)	intravenous				
	Acute bacterial skin and skin structure infections (ABSSSI) Staphylococcus aureus (MSSA/MRSA) bacteremia (bloodstream infections)	intravenous				
Oncology	Derazantinib FGFR kinase inhibitor					
	Intrahepatic cholangiocarcinoma (iCCA) – registrational study	oral				
	Urothelial cancer – monotherapy and combination with atezolizumab	oral				
	Gastric cancer – monotherapy and several combination therapies	oral				
	Lisavanbulin (BAL101553) tumor checkpoint controller					
	Glioblastoma – targeted, biomarker-driven phase 2 study	oral				
	Glioblastoma – combination with radiotherapy	oral				
	Internal & external innovation	Research	Development			

Our strategy

Foster
Foster an agile
organisation based on
a dynamic and open
culture

Focus on continuously increasing cash flow from our two commercial-stage hospital anti-infective brands, Cresemba® and Zevtera®

Focus


Leverage
Leverage our
expertise in bringing
drugs from research to
market by utilising
appropriate
partnerships with
established
organisations

Invest
Invest in our clinical
portfolio of targeted,
small molecule,
oncology drug
candidates and the
phase 3 ceftobiprole
program

Innovate
Continue to broaden
our R&D pipeline
through both internal
and external
innovation

The company we keep — established strong partnerships

License partners

Europe (excl. Nordics), China Asia-Pacific, Russia, Turkey ans Israel (Cresemba®)

U.S. (Cresemba®)

Asahi KASEI

Japan (Cresemba®)

Distribution partners

correvio

Europe (excl. Nordics), Israel (Zevtera®)

hikma.

MENA region (Cresemba® and Zevtera®)

LatAm (Cresemba® and Zevtera®)

Nordics (Cresemba® and Zevtera®)

Canada (Cresemba® and Zevtera®)

(basilea)

Five reasons to invest

Five reasons to invest

Growth

Well funded with increasing and sustainable cash flow through commercialized brands

Prospects

Opportunity to share in pipeline value creation and proven approach to the successful commercialization of products around the world

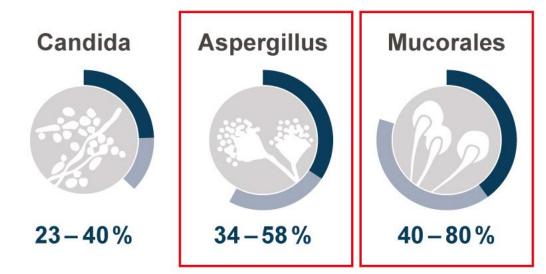
Leadership

Experienced team working in an agile culture able to turn pipeline projects into revenue generating brands

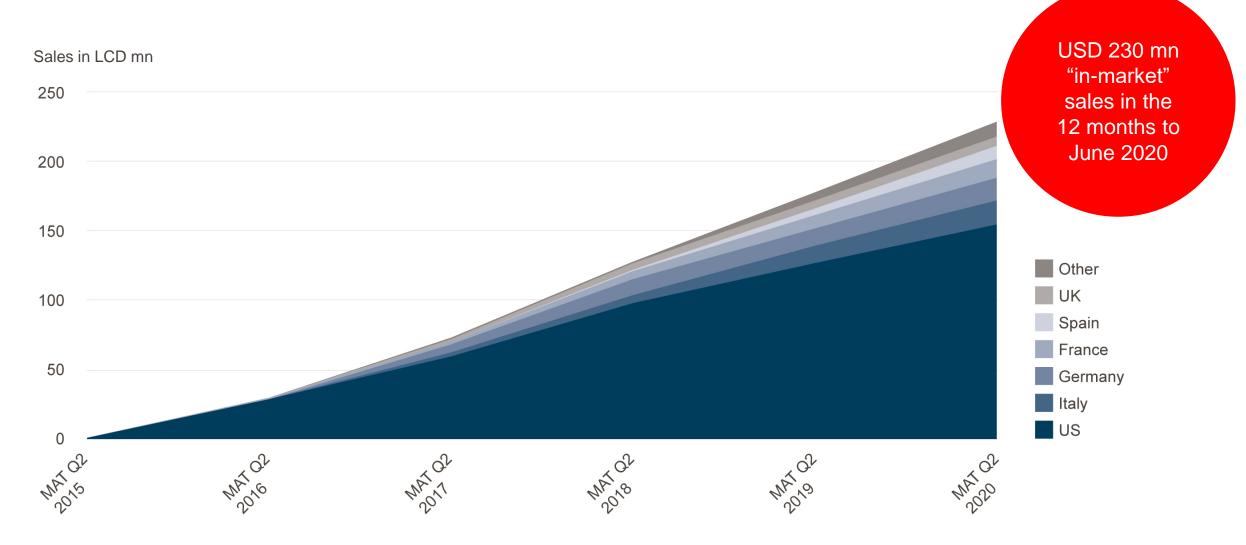
Partnerships

Proven ability to build successful partnerships in research, development and commercialization with leading academic, governmental and industrial organisations

Focus


One of the few biopharmaceutical companies in the world focused on the development and commercialization of targeted oncology small molecules and new antibiotics and antifungals

The market — Invasive fungal infections

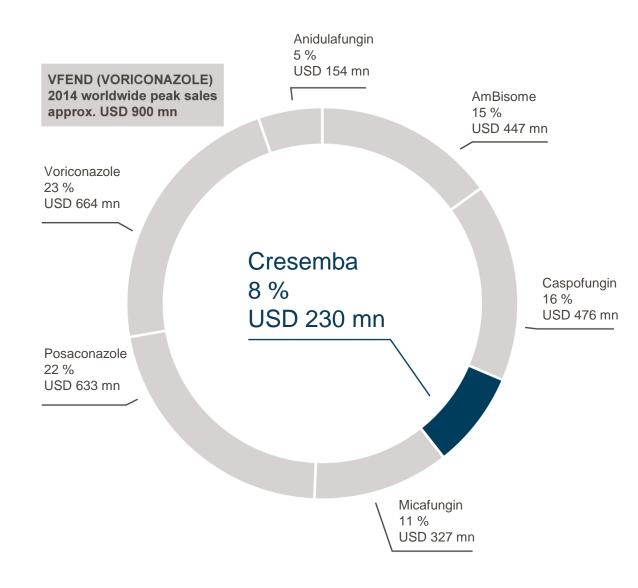

- Severe, potentially life-threatening infections mainly affecting immunocompromised patients
- An important cause of morbidity and mortality in cancer patients undergoing intensive chemotherapy regimens
- Rising number of immunocompromised patients
 (cancer and transplantations) driving therapeutic demand
- Mucorales infections on the rise doubled from 2000 to 2013
- Limitations of current therapies (spectrum of activity, toxicity, effective plasma levels) drive the need for new agents

Mortality rates for invasive fungal infections**

^{**}Kullberg/Arendrup *N Engl J Med* 2015, Baddley *Clin Infect Dis* 2010, Roden *Clin Infect Dis* 2005, Greenberg *Curr Opin Infect Dis* 2004

Cresemba continues strong in-market sales uptake

LCD: USD corrected for currency fluctuations; MAT: Moving annual total; Source: IQVIA, June 2020



Sales of best-in-class antifungals* by product

USD 2.9 bn sales (MAT Q2 2020)

- Potential to increase Cresemba[®] (isavuconazole) market share
 - Anticipate to be launched in 60 countries by end-2021
 - Exclusivity through 2027 in the U.S. and potential pediatric exclusivity extension to 2027 (from 2025) in the EU

^{*} Best-in-class antifungals: isavuconazole, posaconazole, voriconazole, AmBisome, anidulafungin, caspofungin, micafungin

MAT: Moving annual total; Sales figures in USD, corrected for currency fluctuations; Source: IQVIA, June 2020

Cresemba® — Differentiated by spectrum, safety and tolerability

- Broad spectrum of activity against molds, including emerging molds (mucorales)
- Consistent plasma levels
- Statistically fewer drug-related adverse events and treatment-emergent adverse events (liver, skin, eye) in invasive aspergillosis patients vs. voriconazole in SECURE phase 3 study
- Can be administered without restriction in patients with renal impairment

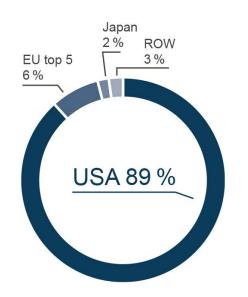
- Manageable drug-drug interaction profile
- Once daily maintenance dose, i.v./oral treatment
- ECIL-6 guideline: Cresemba® recommended for the first-line treatment of invasive aspergillosis in leukemia and hematopoietic stem cell transplant patients. ECIL states that isavuconazole is as effective as voriconazole with a better safety profile.

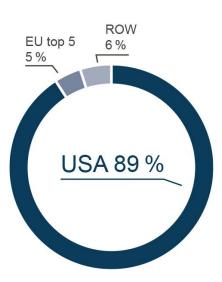
Zevtera® — An introduction

- Broad-spectrum anti-MRSA cephalosporin (including Gram-negative bacteria)
- Rapid bactericidal activity
- Potential to replace antibiotic combinations
- Early improvement in HAP, particularly in patients with MRSA, and CAP, including highrisk patients
- Cephalosporin class safety profile
- Marketed in selected countries in Europe, Latin America and the MENA-region as well as in Canada

Approved in major European countries & several non-European countries for both hospitalacquired pneumonia (HAP), excluding ventilator-associated pneumonia (VAP), and community-acquired pneumonia (CAP). Not approved in the U.S.

MENA: Middle East and North Africa




18

The hospital anti-MRSA antibiotic market — A USD 2.8 bn market* with the U.S. being the most important region

Daptomycin sales by region (2015, before LOE)

Ceftaroline sales by region (MAT Q2 2020)

MRSA: Methicillin-resistant *Staphylococcus aureus*; LOE: Loss of exclusivity; ROW: Rest of world MAT: Moving annual total; Sales figures in USD, corrected for currency fluctuations; Source: IQVIA, June 2020

^{*} Vancomycin, linezolid, teicoplanin, daptomycin, tigecycline, telavancin, ceftaroline, dalbavancin, oritavancin, and tedizolid

Strategy for accessing the U.S. market

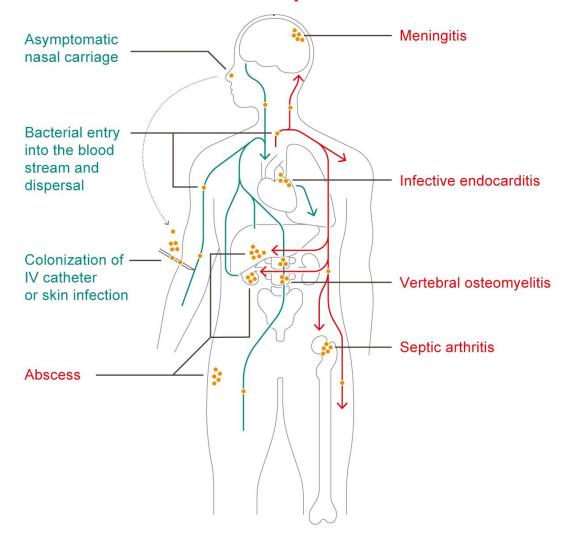
- Two cross-supportive phase 3 studies under FDA Special Protocol Assessment (SPA)
 - Acute Bacterial Skin and Skin Structure Infections (ABSSSI)¹ successfully completed

2. Staphylococcus aureus bacteremia (SAB)² ongoing, topline results from phase 3 study expected in Q1 2022

 Phase 3 program largely funded by BARDA (up to USD ~130 mn, ~70% of total program costs)

 Qualified Infectious Disease Product (QIDP) designation extends U.S. market exclusivity to 10 years from approval

² Hamed K et al. Future Microbiol. 2020;15:35-48. (NCT03138733)



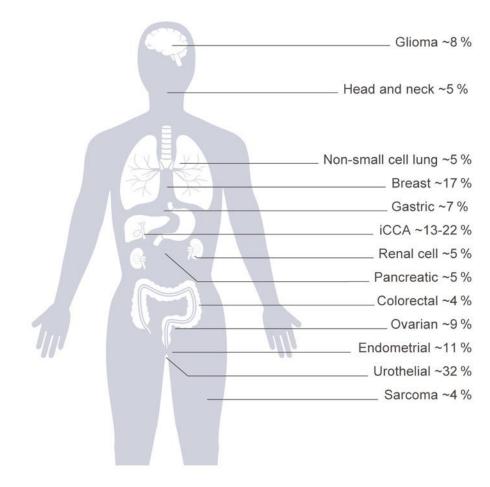
¹ Overcash JS et al. ECCMID 2020, abstract 1594. (NCT03137173)

SAB – an area with high medical need

- Nearly 120,000 S. aureus bloodstream infections in the US (in 2017)¹
- ERADICATE targets complicated SAB, characterized by concomitant or metastatic infections such as bone, joint or heart valve infections; persistent bacteremia; or bacteremia in patients on dialysis
- Substantial morbidity and approximately 20%
 30-day mortality²
- Limited antibiotic treatment options with only two approved treatments for SAB in the U.S. that cover both MSSA and MRSA, i.e. vancomycin and daptomycin

Causes and consequences of SAB

Adapted from Edwards AM et al. Trends Microbiol. 2011;19:184-190.


¹ MMWR, 2019;68:214–219.

² Hamed K et al. Future Microbiol. 2020;15:35-48. MRSA: methicillin-resistant *Staphylococcus aureus* MSSA: methicillin-susceptible *Staphylococcus aureus*

Targeting FGFR-driven tumors as single agent and in combination with immunotherapy

- Small molecule, oral inhibitor of FGFR family of kinases
- Development strategy focused on achieving differentiation by leveraging unique properties of derazantinib
 - Kinase inhibition profile: exploring therapeutic potential of additional targets of derazantinib such as CSF1R and VEGFR2 kinase
 - Safety profile: exploring relevance for potential combination therapies
- Three clinical studies ongoing
 - FIDES-01 (Ph 2) in intrahepatic cholangiocarcinoma (iCCA)
 - FIDES-02 (Ph 1/2) in urothelial cancer
 - FIDES-03 (Ph 1/2) in gastric cancer

Sources: Helsten et al., Clin Cancer Res 2016 (22), 257-267; FGFR2 fusions in iCCA: Graham et al. Hum Pathol 2014 (45), 1630-1638; Jain et al. JCO Precis Oncol 2018 (2) 1-12

Registrational phase 2 study in iCCA (FIDES-01)¹

Cohort 1: Patients with FGFR2 gene-fusion expressing iCCA (2nd line)

- Encouraging interim results, consistent with earlier phase 1/2 data²
 - 21% ORR with six confirmed partial responses from 29 evaluable patients, 83% disease control rate
 - Manageable safety profile with low incidence of nail toxicity, retinal events, hand-foot syndrome and stomatitis
- Topline results expected H2 2020

Cohort 2: Patients with FGFR2 gene mutations or amplifications

- Define the full therapeutic potential in iCCA with potential for differentiation
- Encouraging interim results progression-free survival consistent with outcome in patients with FGFR2 gene-fusions³
 - Pooled data from 23 patients treated in clinical studies and from the early access and compassionate use programs
 - 7.2 months median progression free survival and
 8.2 months median duration of treatment

³Droz Dit Busset et al. Annals of Oncology (2020) 31 (suppl_5): abstract 45P (NCT01752920, NCT03230318)

¹ NCT03230318

²Droz Dit Busset et al. Annals of Oncology (2019) 30 (suppl_5): abstract 3879 (NCT01752920)

Clinical program in urothelial and gastric cancer

FIDES-02¹ | Urothelial Cancer

Multi-cohort Phase 1b/2 study of derazantinib monotherapy or in combination with atezolizumab in patients with urothelial cancer expressing activating molecular FGFR aberrations

- Substudies (N≈300) in various treatment settings, including:
 - Post-chemotherapy/immunotherapy recurrence (second-line and post second-line)
 - First-line platinum-ineligible, PD-L1-low
 - Resistance to prior FGFR-inhibitor treatment
- Successful completion of phase 1b cohort
 - Recommended phase 2 dose for the combination at full standard doses of derazantinib and atezolizumab
 - No dose-limiting toxicities observed

FIDES-03 | Gastric Cancer

Multi-cohort Phase 1b/2 study of derazantinib as monotherapy or in combination therapy with standard of care or atezolizumab in patients with advanced HER2-negative gastric adenocarcinoma harboring FGFR genetic aberrations

- Substudies using derazantinib monotherapy or combination treatment, including:
 - Derazantinib monotherapy in various molecular subtypes
 - Combination of derazantinib and standard of care
 - Combination of derazantinib with atezolizumab

¹ NCT04045613; Chaudhry A et al. Journal of Clinical Oncology 2020; 38, no. 6_suppl. TPS590. (NCT04045613)

FGFR-inhibitors show differences in safety profiles

		Cholangi	Urothelial cancer			
	DZB ¹ (N=44)	INF ² (N=71)	FUT ³ (N=67)	PEM ⁴ (N=146)	PEM ⁵ (N=108)	ERD ⁶ (N=87)
Dosing regimen	300mg QD	125mg Q4W QD for 3w	20 mg QD	13.5mg Q3W QD for 2w	13.5mg Q3W QD for 2w	8 mg QD (titration to 9mg)
Most frequent safety events	Phosphorus企 Nausea Vomiting	Phosphorus û Phosphorus Fatigue Diarrhea* Stomatitis Dry mouth		Phosphorus û Alopecia Diarrhoea	Diarrhoea Alopecia Constipation	Phosphorus û Stomatitis Fatigue
Blood phosphorusû [†]	59%	73%	88%	60%	31%	76%
Fatigue [†]	43%	49%	NR	42%	32%	54%#
Alopecia [†]	20%	38%	NR	49%	40%	26%
Dry eye/xerophthalmia [†]	16%	32%	NR	35%#	NR	28%#
Retinopathy [¶]	0%	NR	9%	6% [‡]	NR	25%
Alanine aminotransferase (ALT) 仓	30%**	NR	NR	43%**	NR	41%**
Hand-foot syndrome/PPE	0%	27%	18%	15%	NR	26%
Nail toxicities	<5%	NR	42%	43%#	NR	41%#
Stomatitis	11%	45%	NR	35%	34%	56%

¹ Droz Dit Busset et al., ESMO 2019 and Basilea data on file, ² Javle et al., ESMO 2018, ³ Goyal et al., ASCO 2020, ⁴ Pemazyre™ U.S. Prescribing Information (April 2020), ⁵ Necchi, et al., ESMO 2018,

Abbreviations: DZB: derazantinib, INF: infigratinib (BGJ398), FUT: futibatinib (TAS-120), PEM: pemigatinib (INCB54828), ERD: erdafitinib; PPES: Palmar-plantar erythrodysesthesia; NR: not reported; QD: daily; Q3W/Q4W: every 3/4 weeks; w: weeks

⁶ Balversa[™] U.S. prescribing information (April 2019)

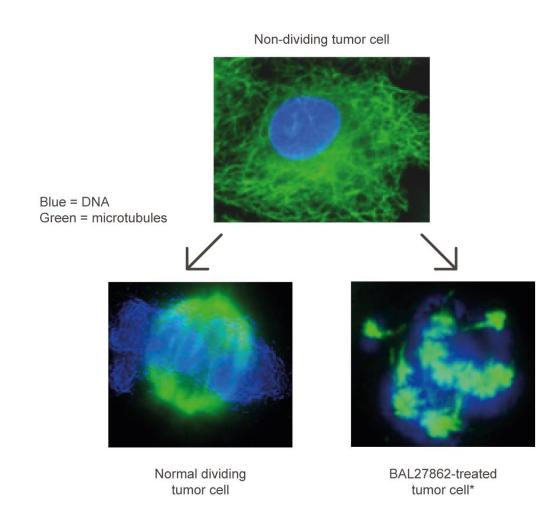
[†] assumed FGFR inhibitor class-effect; *futibatinib treatment-related adverse events

[#] includes various and different adverse reactions; for details see Pemazyre™ U.S. Prescribing Information (April 2020) and Balversa™ U.S. prescribing information (April 2019);

[¶]Refers to reported adverse events of Retinal Pigment Epithelial Detachment (RPED) for pemigatinib, Central Serous Retinopathy (CSR)/RPED for erdafitinib and CSR for futibatinib

[‡] reported incidence is from 466 patients who received Pemazyre™ across clinical trials;

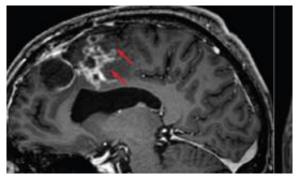
^{**} based on reported adverse events for DZB; based on reported laboratory abnormalities, regardless of causality for PEM and ERD.


Lisavanbulin (BAL101553)

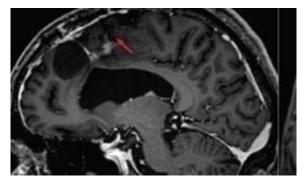
Glioblastoma and other solid tumors

Novel tumor checkpoint controller crossing the blood-brain barrier

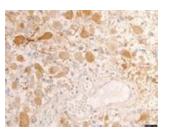
- Novel compound inducing tumor cell death through spindle assembly checkpoint activation
- Targeting diverse tumor types resistant to standard therapeutic approaches
- Flexible dosing potential, including daily oral dosing
- Comprehensive biomarker program to optimize patient selection
- Crosses the blood-brain barrier with potent activity in brain tumor models alone and in combination
- Biomarker-driven phase 2 study in patients with recurrent glioblastoma (GBM) using EB1positivity as patient selection criterion ongoing



^{*} Lisavanbulin (BAL101553) is a prodrug of BAL27862


EB1 — A potential response-predictive clinical biomarker for lisavanbulin

- EB1 (plus-end binding protein) is located on the microtubules and involved in microtubule dynamics and has been shown to be a response predictive marker for lisavanbulin in preclinical studies
- Strong EB1 staining was observed in a patient with an exceptional response to daily oral lisavanbulin in the phase 1 dose-escalation study in recurrent GBM¹
 - Patient ongoing for more than two years
 - >80% reduction in GBM tumor size


GBM tumor size reduction in an exceptional responder and EB1 staining of GBM tissue compared to non-responding patients

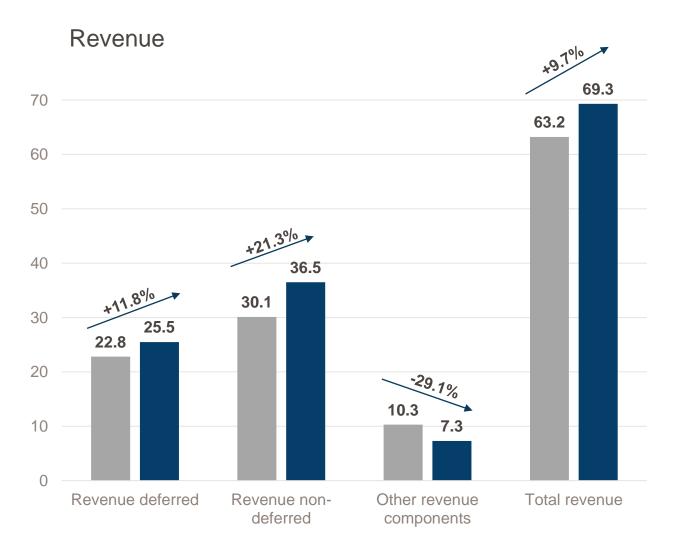
Baseline (May 2018)

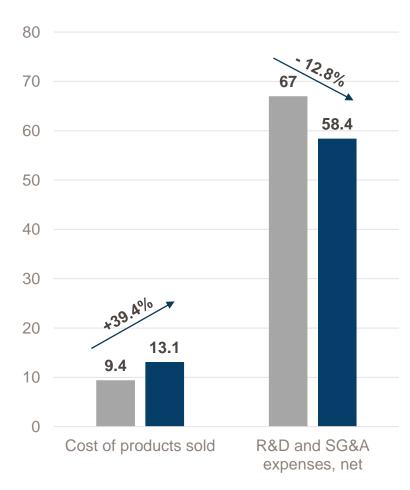
Post Cycle 12 (April 2019)

Responder

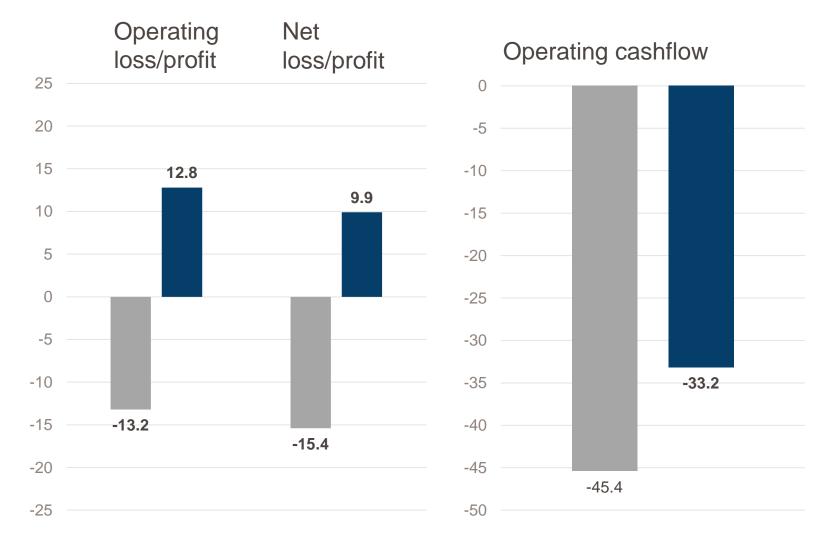
Non-responder

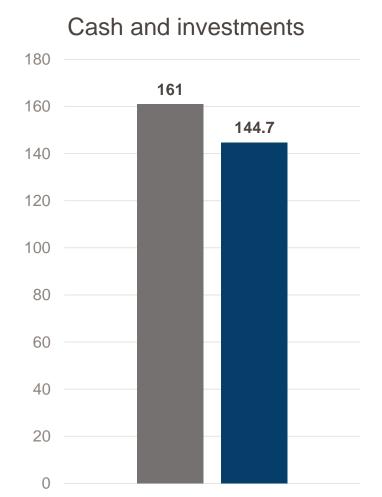
¹Lopez et al. Phase 1/2a study of once daily oral BAL101553, a novel tumor checkpoint controller, in adult patients with progressive or recurrent glioblastoma or high-grade glioma. JCO 2019;37:15 suppl, 2025 (NCT02490800)




Financials

Financial summary, in CHF mn (1/2)

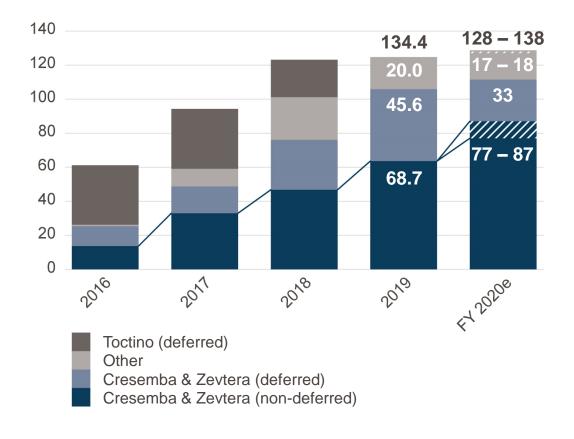

Note: Consolidated figures in conformity with U.S. GAAP; rounding applied consistently



Focused on Growth and Innovation 31

Financial summary, in CHF mn (2/2)

Note: Consolidated figures in conformity with U.S. GAAP; rounding applied consistently



Focused on Growth and Innovation

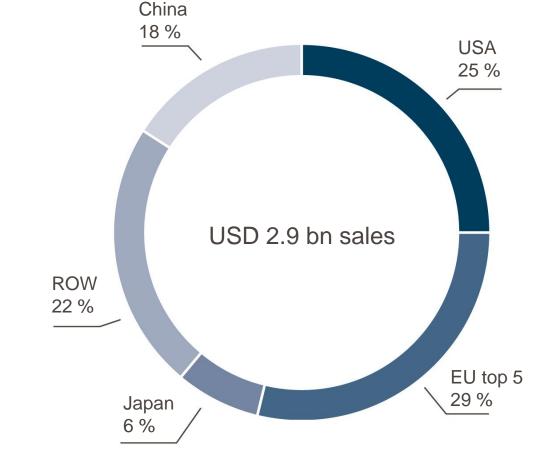
Financial guidance

In CHF mn	FY 2020e	FY 2019
Total revenue	128 – 138	134.4
thereof: Contributions Cresemba® & Zevtera® non-deferred deferred	77–87 33	68.7 45.6
Operating loss	5-15	17.2
Cash and investments	150	161.0

Strong increase in non-deferred revenue contributions Y-o-Y, CHF mn

Outlook 2020 / 2021

Cresemba[®] & Zevtera[®] — Increasing cash flows By the end of 2021, Cresemba to be on the market in 60 countries

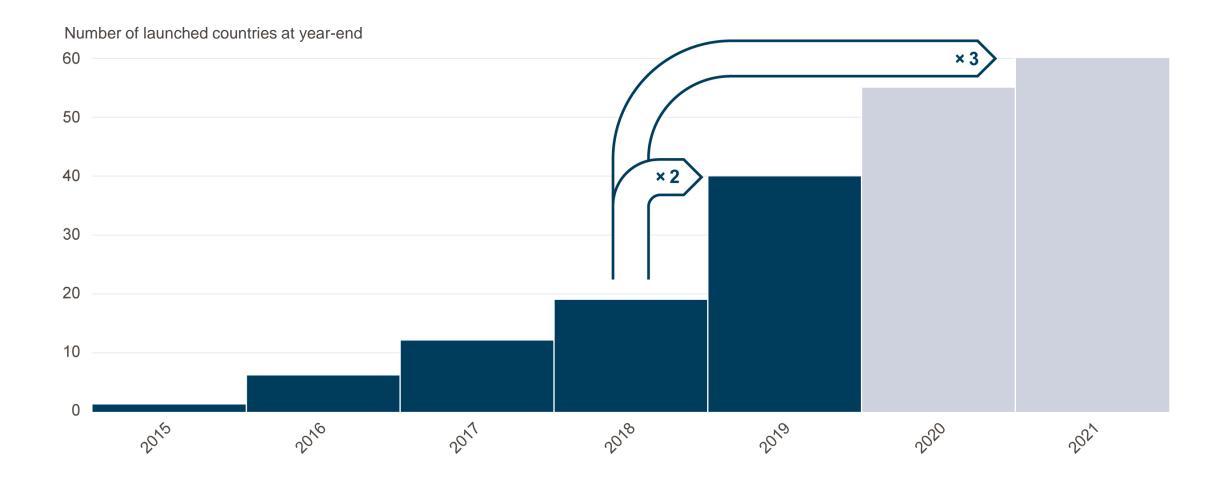

	- , and once of -0-1, or occument to the one and manner of							
			H1 2020		H2 2020	H1 2021	H2 2021	
Isavuconazole				Complete patient enrolment in phase 3 study in Japan			Topline results from phase 3 study in Japan	
Ceftobiprole							Complete patient enrolment in SAB phase 3 study	
	FIDES-01 (iCCA)	✓	Complete patient enrolment in phase 2 registrational study (FGFR2 fusions)		Topline results (FGFR2 fusions)			
				√	Interim results (other FGFR2 gene aberrations)		Topline results (other FGFR2 gene aberrations)	
Derazantinib	FIDES-02 (urothelial cancer)			√	Safety data and recommended phase 2 dose (RP2D) for derazantinib/atezolizumab combination and expansion into phase 2	Interim results in derazantinib monotherapy	Interim results in combination therapy with atezolizumab	
	FIDES-03 (gastric cancer)	✓	Clinical supply agreement with Roche in gastric cancer	√	Start of phase 1/2 study		Interim results	
Lisavanbulin		√	Full results of phase 1 study in glioblastoma*	√	Start phase 2 biomarker-driven glioblastoma study	Interim results from phase 2 biomarker-driven glioblastoma study	Topline results from phase 2 biomarker-driven glioblastoma study	
(Oral)						Complete patient enrolment in phase 1 study in newly diagnosed glioblastoma		

^{*} Accepted for ESMO poster presentation (Sept. 2020)

Appendix

Significant sales of bestin-class antifungals in all major regions — Covered by our partnerships

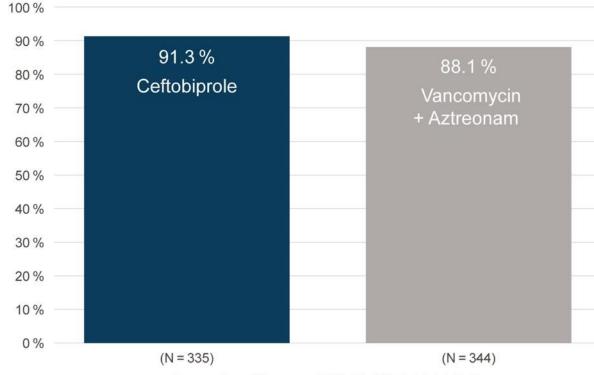
USD 2.9 bn sales of best-in-class antifungals* (MAT Q2 2020)



MAT: Moving annual total; Sales figures in USD, corrected for currency fluctuations; Source: IQVIA, June 2020

^{*} Best-in-class antifungals: isavuconazole, posaconazole, voriconazole, AmBisome, anidulafungin, caspofungin, micafungin

Cresemba® — Strong global roll out


Ceftobiprole — Positive topline phase 3 results reported in ABSSSI

Key topline study¹ results showing non-inferiority of ceftobiprole to vancomycin plus aztreonam for the primary and secondary endpoints

Early clinical response at 48–72h after start of treatment (ITT population)

Patients with early clinical success at 48 - 72 hours (%)

Proportion difference (95% CI) (%): 3.3 (-1.2, 7.8)

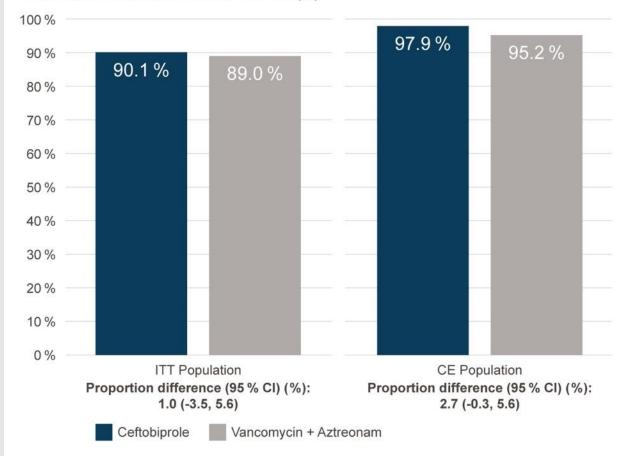
¹ NCT03137173 ABSSSI: Acute bacterial skin and skin structure infections

Pre-defined limit of non-inferiority = lower limit of 95 % CI for difference > -10 %

ITT: intent-to-treat

Ceftobiprole — Positive topline phase 3 results reported in ABSSSI

Key topline study¹ results showing non-inferiority of ceftobiprole to vancomycin plus aztreonam for the primary and secondary endpoints



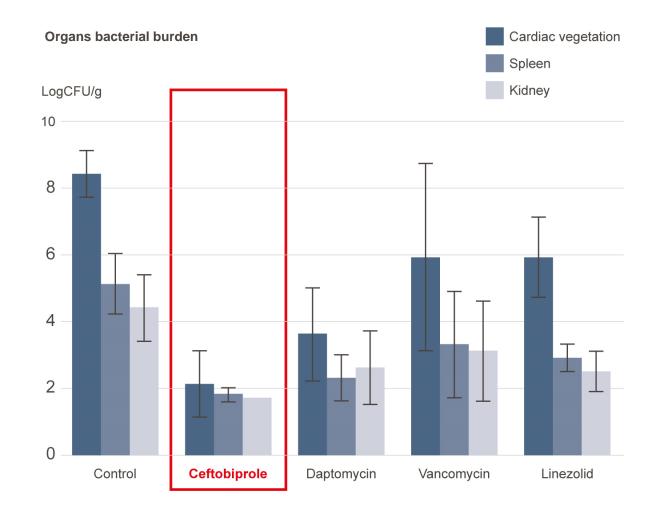
¹ NCT03137173 ABSSSI: Acute bacterial skin and skin structure infections

basilea

Investigator-assessed clinical success at test-of-cure (TOC) 15-22 days after randomization (ITT, CE populations)

Patients with clinical success at the TOC visit (%)

Confidential/proprietary information of Basilea Pharmaceutica International Ltd. - not for distribution


39

CE: clinically evaluable; ITT: intent-to-treat

Ceftobiprole key attributes for SAB treatment

- Beta-lactam antibiotic with rapid bactericidal activity against MSSA and MRSA¹
- Superior activity profile in preclinical models of endocarditis compared to vancomycin and daptomycin²
- Low propensity for resistance development¹
- Gram-negative coverage¹ in cases with polymicrobial infections
- Efficacy demonstrated in Phase 3 clinical trials in pneumonia and complicated skin and soft tissue infections^{1,3,4}
- Established safety profile consistent with the cephalosporin class^{1,3}

Comparative efficacy in a rabbit model of endocarditis

Organism titers in cardiac vegetations, spleens and kidneys of untreated and antibiotic treated rabbits infected with MRSA²

¹Syed YY. Drugs. 2014;74:1523-1542.

²Tattevin P et al. Antimicrob Agents Chemother. 2010;54:610-613.

³Giacobbe DR et al. Expert Rev Anti Infect Ther. 2019;17:689-698.

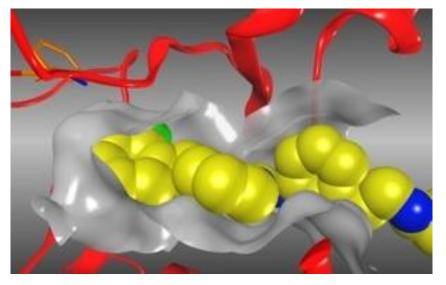
⁴Overcash JS et al. ECCMID 2020, abstract 1594

Phase 3 study with ceftobiprole in the treatment of patients with SAB

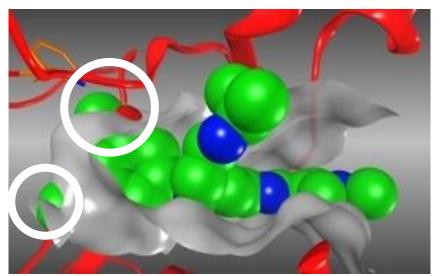
- Design: randomized, double-blind, multicenter
- Enrolment: approximately 390 adult patients (male and female)
- Indications: Staphylococcus aureus bacteremia (SAB), including endocarditis (IE) and other forms of complicated SAB
- Main inclusion criteria: Positive S. aureus blood culture and signs & symptoms for SAB
- Intervention: ceftobiprole medocaril i.v.; comparator daptomycin i.v. or daptomycin plus aztreonam to cover Gramnegative bacteria

- Primary endpoint: overall success as assessed by an independent Data Review Committee (DRC) in the treatment of SAB, including IE, at the post-treatment evaluation (PTE) visit (70 days after randomization) in the modified intent-to-treat (mITT) population.
- Secondary endpoints: includes all-cause mortality at Day 28 and Day 70 (PTE visit) in the intent-to-treat (ITT) and mITT populations; and time to S. aureus bloodstream clearance

FGFR-inhibitors show differences in kinase-inhibition profiles¹


FGFR-inhibitor compound (Sponsor)	Parameter	FGFR1	FGFR2	FGFR3	FGFR4	CSF1R	VEGFR2
Derazantinib (Basilea)	Ratio to FGFR2 activity	4	1	4	77	3	6
Pemigatinib (Incyte)	Ratio to FGFR2 activity	3	1	4	39	231	62
Erdafitinib (Janssen)	Ratio to FGFR2 activity	2	1	2	13	95	6
Rogaratinib (Bayer)	Ratio to FGFR2 activity	5	1	6	18	116	48
Infigratinib (QED)	Ratio to FGFR2 activity	2	1	2	47	86	55
Futibatinib (Taiho)	Ratio to FGFR2 activity	2	1	2	18	NA	NA

¹ McSheehy et al. Derazantinib (DZB): A dual FGFR/CSF1R-inhibitor active in PDX-models of urothelial cancer. Mol Cancer Ther. 2019 (18) (12 Supplement) LB-C12

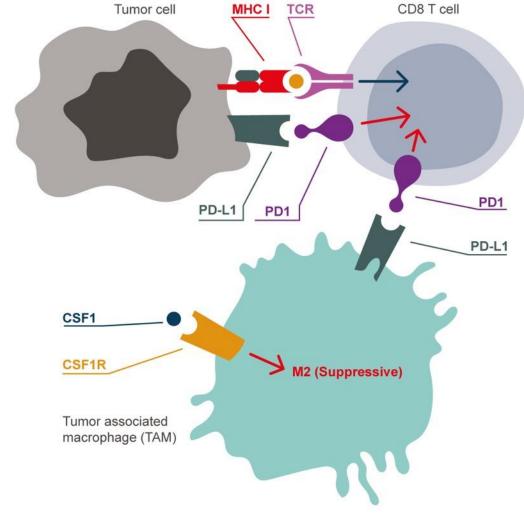


In-silico analysis of derazantinib binding to CSF1R

- Crystal structures indicate differences in inhibitor binding sites of FGFR and CSF1R kinases
- Improved kinase inhibition activity of derazantinib against CSF1R versus other FGFR-inhibitors can be explained by the unique chemical structure of derazantinib¹

Derazantinib (yellow) fits to smaller active site pocket of CSF1R (grey/red)

Erdafitinib (green) is too large (white circles) for the active site pocket of CSF1R (grey/red)

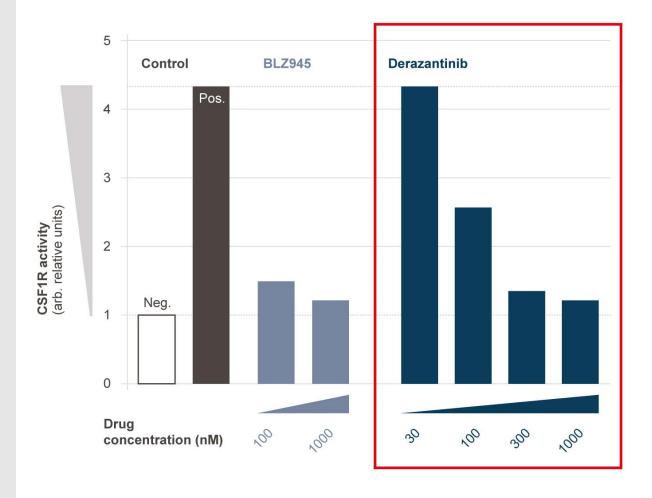

¹ McSheehy et al. Derazantinib (DZB): A dual FGFR/CSF1R-inhibitor active in PDX-models of urothelial cancer. Mol Cancer Ther. 2019 (18) (12 Supplement) LB-C12

Potential therapeutic relevance of CSF1R-inhibition

- Derazantinib is active in inhibiting FGFR kinases and CSF1R (Colony-stimulating factor-1 receptor)
- CSF1R-inhibition may reprogram immunosuppressive tumor-infiltrating macrophages, restore T-cell activity and thereby improve the susceptibility to PD1/PD-L1 inhibitors¹
- Derazantinib may address several oncogenic mechanisms at the same time, i.e. inhibiting FGFR and making the tumor more susceptible to immunotherapy
- Basilea entered into a clinical supply agreement with Roche to study a combination of derazantinib and Roche's PD-L1blocking immune-checkpoint inhibitor atezolizumab in patients with urothelial and gastric cancer

Tumor microenvironment

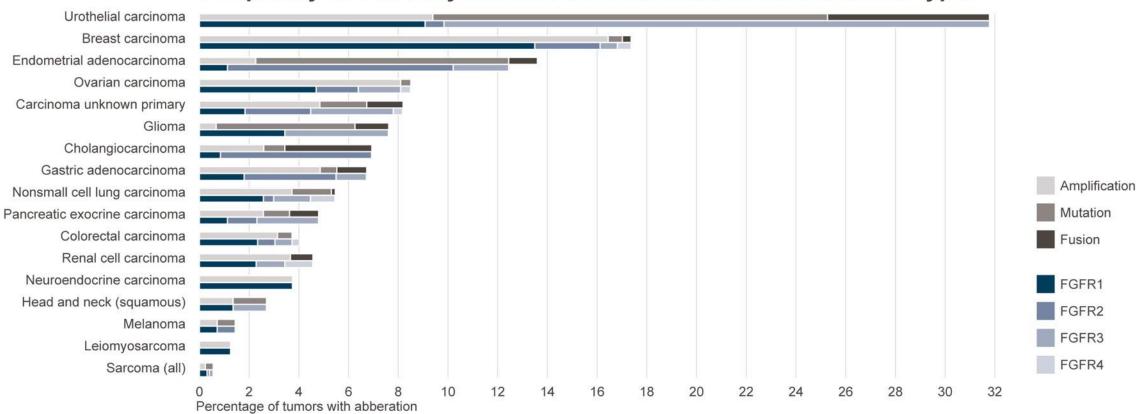
Graph adapted from: A. Ghasemzadeh et al. New Strategies in Bladder Cancer: A Second Coming for Immunotherapy. Clin Cancer Res. 2016;22(4):793-801


¹ X. Zheng et al. Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget. 2017;8(29):48436-48452

Derazantinib inhibits mouse macrophage CSF1R activity

- Derazantinib treatment reduced CSF1stimulated CSF1R activation (pCSF1R) in a concentration-dependent manner
- The maximum effect is similar to the specific CSF1R inhibitor BLZ945
- Derazantinib active-concentration is achievable in patients

Inhibition of CSF1R activity

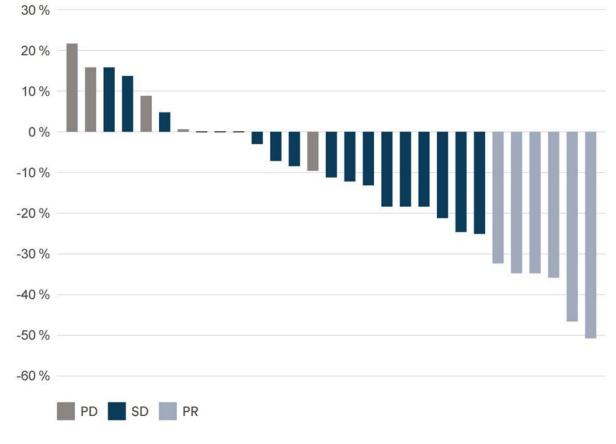

Method: bone-marrow-derived mouse macrophages were starved overnight, treated with CSF1 for 3 min, with or without pre-incubation with BLZ945 or DZB, and then extracted for subsequent immunoblot. The graph shows the quantification of the experiment based on densiometric analysis of the immunoblots

¹McSheehy et al. Derazantinib (DZB): A dual FGFR/CSF1R-inhibitor active in PDX-models of urothelial cancer. Mol Cancer Ther. 2019 (18) (12 Supplement) LB-C12

Derazantinib — Significant potential beyond iCCA

Source: Helsten et al., Clin Cancer Res. 2016;22:259-67

Derazantinib — Multi-cohort phase 1/2 study in advanced urothelial cancer (FIDES-02)¹


- Derazantinib as single agent and in combination with atezolizumab in patients with advanced urothelial cancer testing positive for mutations or fusions of FGFR1, FGFR2 or FGFR3 genes
- The subgroup of patients with low PD-L1 expression have limited clinical benefit from the treatment with PD1/PD-L1 inhibitors. This subgroup, however, shows frequent FGFR genomic abnormalities (mainly FGFR3 fusions)
- Derazantinib combined with PD1/PD-L1 inhibitors may provide benefits related to multiple mechanisms (FGFR-inhibition, macrophage modulation, enhanced response to immunotherapy), in particular in the low PD-L1 expression subgroup

- Across a total of four sub-studies, FIDES-02 potentially can enroll up to approximately 300 patients
- Patient cohorts in various treatment settings, including:
 - Post-chemotherapy/immunotherapy recurrence (second-and post second-line)
 - First-line platinum-ineligible
 - Resistance to prior FGFR-inhibitor treatment
- Study conducted in multiple centers in Asia-Pacific,
 Europe and North America
- Clinical supply agreement with Roche for the immune-checkpoint inhibitor atezolizumab

Derazantinib — Established proof-of-concept in iCCA in phase 1/2a study

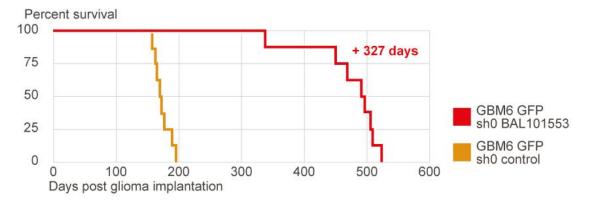
- Subgroup analysis of 29 patients with FGFR2-fusion positive iCCA:
 - Objective response rate of 21%
 - In 72% of patients, tumor response or disease stabilization for ≥16 weeks was achieved*
- Compares favorably to Standard-of-Care (SoC) chemotherapy (cross-trial comparison)
 - Objective Response Rate (ORR) 21% for derazantinib¹ versus <10% for SoC^{2, 3}
 - Progression-Free Survival (PFS) approx. 6 months¹
 versus 3 months for SoC^{2, 3}
- Manageable safety profile^{1, 4}

Best change of target lesion from baseline

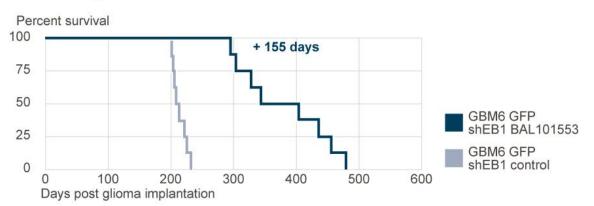
Sources: Mazzaferro et al. British Journal of Cancer 2018;

¹ V. Mazzaferro et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. British Journal of Cancer 2018 ² A. Lamarca et al. Second-line chemotherapy in advanced biliary cancer: a systematic review. Annals of Oncology 2014 (25), 2328-2338; ³ L. Fornaro et al. Second-line chemotherapy in advanced biliary cancer progressed to first-line platinum-gemcitabine combination: a multicenter survey and pooled analysis with published data. Journal of Experimental & Clinical Cancer Research 2015 (34), 156 ⁴ K. P. Papadopoulos et al. A phase 1 study of ARQ 087, an oral pan-FGFR inhibitor in patients with advanced solid tumors. British Journal of Cancer 2017, 1-8

^{*} Mazzaferro et al. J Clin Oncol 2017;35 suppl: abstract 4017

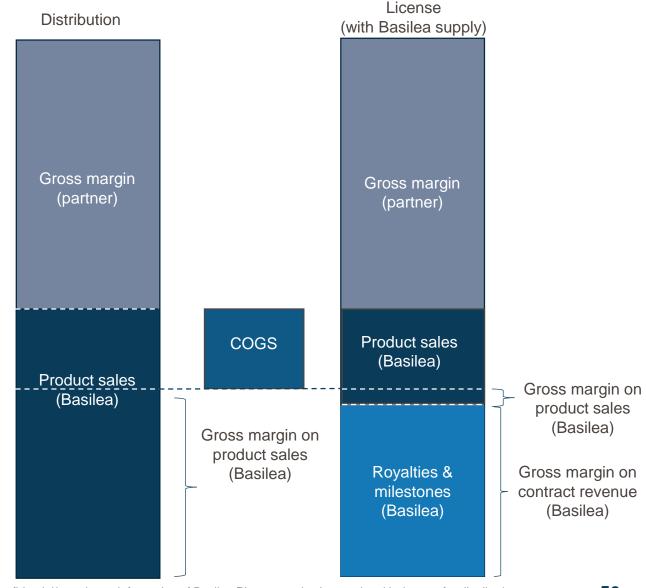

EB1 — A potential response-predictive clinical biomarker for lisavanbulin

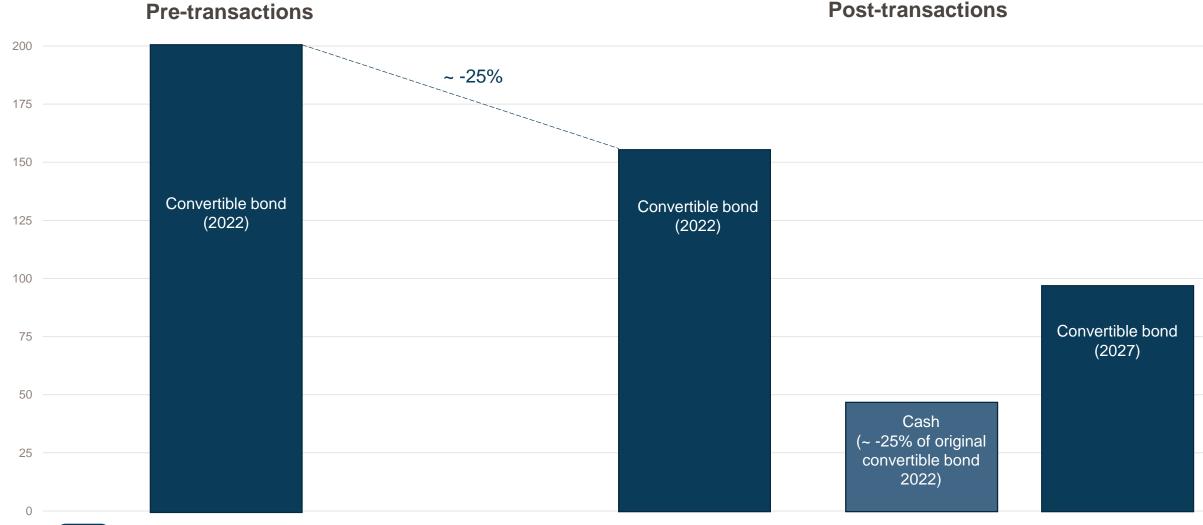
- EB1 (plus-end binding protein)¹ is located on the microtubules and involved in microtubule dynamics
- Predictive of response to lisavanbulin in mouse models¹


basilea

Effect of lisavanbulin (BAL101553) on survival in mice with EB1-expressing or EB1 downregulated GBM

EB1-expressing GBM


EB1-downregulated GBM


¹Berges et al. EB1-dependent long survival of glioblastoma cancer stem-like cell tumorbearing mice after oral treatment with the novel tubulin-binding checkpoint activator BAL101553. Eur. J. Cancer 2018, 103, E61-62, A166

Extension of Pfizer supply period

- Supply API and bulk Cresemba vials 2020/2021
 - Increase in product sales (in CHF)
 - Increase in cost of products sold (in CHF);
 economies-of-scale in supply to other partners
 - Lower gross margin (in % of product sales)
 - Temporary increase in working capital
- => Net positive cash flow over 2020/2021

Convertible bond transactions — successfully improved debt maturity profile (in CHF mn)

Focused on Growth and Innovation

Glossary

- ABSSSI: Acute bacterial skin and skin structure infections
- CSF1R: Colony-stimulating Factor 1 Receptor
- FGFR: Fibroblast Growth Factor Receptor
- GBM: Glioblastoma multiforme
- iCCA: Intrahepatic cholangiocarcinoma
- MRSA: methicillin-resistant Staphylococcus aureus
- MSSA: methicillin-susceptible Staphylococcus aureus
- SAB: Staphylococcus aureus bacteremia
- VEGFR2: Vascular Endothelial Growth Factor Receptor 2

Disclaimer and forward-looking statements

This communication, including the accompanying oral presentation, contains certain forward-looking statements, including, without limitation, statements containing the words "believes", "anticipates", "expects", "supposes", "considers", and words of similar import, or which can be identified as discussions of strategy, plans or intentions. Such forward-looking statements are based on the current expectations and belief of company management, and are subject to numerous risks and uncertainties, which may cause the actual results, financial condition, performance, or achievements of Basilea, or the industry, to be materially different from any future results, performance, or achievements expressed or implied by such forward-looking statements. Such factors include, among others, the following: the uncertainty of pre-clinical and clinical trials of potential products, limited supplies, future capital needs and the uncertainty of additional funding, compliance with ongoing regulatory obligations and the need for regulatory approval of the company's operations and potential products, dependence on licenses, patents, and proprietary technology as well as key suppliers and other third parties, including in preclinical and clinical trials, acceptance of Basilea's products by the market in the event that they obtain regulatory approval, competition from other biotechnology, chemical, and pharmaceutical companies, attraction and retention of skilled employees and dependence on key personnel, and dependence on partners for commercialization of products, limited manufacturing resources, management's discretion as to the use of proceeds, risks of product liability and limitations on insurance, uncertainties relating to public health care policies, adverse changes in governmental rules and fiscal policies, changes in foreign currency and other factors referenced in this communication. Given these uncertainties, prospective investors are cautioned not to place undue reliance on such forwardlooking statements. Basilea disclaims any obligation to update any such forward-looking statements to reflect future events or developments, except as required by applicable law. Derazantinib and its uses are investigational and have not been approved by a regulatory authority for any use. Efficacy and safety have not been established. The information presented should not be construed as a recommendation for use. The relevance of findings in nonclinical/preclinical studies to humans is currently being evaluated.

Focused on Growth and Innovation

Grenzacherstrasse 487 PO Box 4005 Basel Switzerland

investor_relations@basilea.com www.basilea.com

All rights reserved.

© Basilea Pharmaceutica International Ltd. 2020